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P R E F A C E

In this monograph, modern mathematical methods for investi-
gation of polarized electromagnetic wave propagation in nonlinear
waveguide structures are considered. These methods have been de-
veloped by the authors over the last several years. The structures
under consideration are layers and circle cylindrical waveguides filled
with nonlinear medium. The permittivity of the medium is a func-
tion of electric field intensity.

The problems can be reduced to nonlinear boundary eigenvalue
problems for ordinary differential equations. In particular, we study
eigenvalue problems as mathematical problems for Maxwell equa-
tions. Although the attempts to solve such problems had been known
for a long period the main results have been obtained recently. For
over 35 years many papers were published in scientific journals and
different approaches were suggested. As it seems to the authors
they developed the general approach for such problems. It is called
Integral Dispersion Equation Method. This method allows to study
problems of wave propagation from the common standpoint and
allows to obtain information about the behavior of dispersion curves.
It should be noticed that obtained dispersion equations can be stud-
ied both analytical and numerical methods. Propagation constants
can be calculated from dispersion equations.

We would like to emphasize that suggested approach allows to
study both nonlinear materials and nonlinear metamaterials.

Monograph consists of introduction and two parts, the first of
which is devoted to investigation of boundary eigenvalue problems
in layers and the second one is devoted to boundary eigenvalue
problems for circle cylindrical waveguide. Each part contains several
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chapters, and each chapter contains several sections. Such a structure
of the monograph allows to read every section independently of the
others. In each section we assume continuous numbering of formulas.
If we refer to a formula from another section of a given chapter, we
add the number of the section before the number of the formula.
Similarly we add the number of the chapter if we refer to a formula
from another chapter. We assume similar numbering for definitions,
theorems, lemmas and so on.

This monograph can be used by scientific researchers, post-
graduate and graduate students who investigate electromagnetic
problems as well as mathematical models of processes of electro-
magnetic wave propagation.

We hope that the study of the methods considered in this
monograph extends the mathematical erudition of the reader in
the area of electrodynamics, and allows the investigation of new
complicated electromagnetic problems.

Yury Smirnov, Dmitry Valovik



I N T R O D U C T I O N

Problems of electromagnetic wave propagation in nonlinear
waveguide structures are intensively investigated during several dec-
ades. First known studies about the problems are the monographs [3,
9]. Propagation of electromagnetic wave in layers and circle cylindri-
cal waveguides are among such problems. Phenomena of electromag-
netic wave propagation in nonlinear media have original importance1

and also find a lot of applications, for example, in plasma physics,
microelectronics, optics, laser technology [3, 9, 35]. Nonlinear effects
can be observed in liquid crystals [26], semiconductors (such as InSb,
HgCdTe) etc. Developing of mathematical models and methods for
their solving for such problems is getting more and more important.

There are a lot of different nonlinear phenomena in media when
electromagnetic wave propagates, such as self-focusing, defocusing,
and self-channeling etc. [9, 35]. In order to describe the influence of
different phenomena it is necessary to develop new analytical and
numerical methods for studying such problems.

Investigation of nonlinear phenomena leads us to solve nonlin-
ear differential equations. More precisely, it is necessary to solve
nonlinear boundary eigenvalue problems, which rarely can be solved
analytically. One of the important nonlinear phenomenon is the
case when the permittivity of the sample depends on electric field
intensity. (For the case of Kerr nonlinearity2 see, for example, [17,
18]). Solving such problems in a strong electromagnetic statement
is very difficult. Many researchers try to simplify these problems in
different ways [12, 44].

1Such phenomena in some cases can be described by nonlinear boundary
eigenvalue problems for the Maxwell equations, which are not easy to solve.

2When one says that the permittivity ε is described by Kerr law this means
that ε = εconst +α|E|2, εconst is the constant part of the permittivity ε; α is the
nonlinearity coefficient; |E|2 = E2

x + E2
y + E2

z is the squared absolute value of
the electric field E = (Ex, Ey, Ez).
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Perhaps, the paper [17] was the first study where some problems
of electromagnetic wave propagation are considered in a strong elec-
tromagnetic statement. Propagation of polarized electromagnetic
waves in a layer and in a circle cylindrical waveguide with Kerr
nonlinearity is considered in this paper.

Problems of electromagnetic wave propagation in a linear layer
(with constant permittivity) and in a linear circle cylindrical wave-
guide were deeply studied many years ago, see, for example [1, 64,
68]. Such problems are formulated as boundary eigenvalue problems
for ordinary differential equations. However, in the nonlinear cases
many researches (see, for example, [23, 32, 33, 46, 52]) pay more
attention to solve the differential equations and do not point out
to find dispersion equations2 (DE). In the most cases the equations
can not be integrated in an explicit form. Of course, if one has the
explicit solutions of the differential equations it is easy to write the
DE. Therefore, when the equations can not be integrated things do
not go to a DE. However, in some cases the DE can be found in an
explicit form and it is not necessary to have explicit solutions of dif-
ferential equations. We should underline that the problems under
consideration are exactly boundary eigenvalue problems. Indeed,
the main interest in these problems is the value of the spectral pa-
rameter (eigenvalues), which corresponds to the propagating wave.
If an eigenvalue is known it is easy to solve differential equations
numerically. Otherwise numerical methods can not be successfully
applied.

Let us discuss in detail the case of Kerr nonlinearity. Propa-
gation of TE waves were most studied. The work [45] is devoted
to the problem of electromagnetic wave propagation in a nonlinear
dielectric layer with absorption and the case of Kerr nonlinearity is
considered separately. Propagation and reflection of TE wave in a
nonlinear layer are studied in the article [46]. In this case the equa-
tions are integrated in the term of Weierstrass elliptic function. One

2From the mathematical standpoint the DE is an equation with respect to
spectral parameter. Analysis of this equation allows us to make conclusions
about problem’s solvability, eigenvalues’ localization etc.



INTRODUCTION 9

of the most interesting results about propagation of TE waves in a
layered structure with Kerr nonlinearity is the paper [48].

The case of TM wave propagation in a nonlinear medium is
more complicated. This is due to the fact that two components of
the electric field complicate the analysis [11]. As it is known the
permittivity is expressed in terms of the electric field components
and two components lead to more complicated dependence of the
permittivity on the electric field intensity. Hence we obtain more
complicated differential equations.

In the work [12] a linear dielectric layer is considered. The
layer is located between two half-spaces, the half-spaces are filled
by nonlinear medium with Kerr nonlinearity. This problem for TE
waves is solved analytically [10, 50]. For the TM case in [12] the
DE is obtained, which is an algebraic equation. It should be noticed
that in [12] authors simplify the problem. Earlier in [2] with other
simplifying assumption the DE is obtained (authors take into ac-
count only one component Ex of the electric field). Later in [51] it
is proved that the dominating nonlinear contribution in the permit-
tivity is proportional to the transversal component Ez. In the works
[23, 69] propagation of TM waves in a nonlinear half-space with Kerr
nonlinearity is considered. Formal solutions of differential equations
in quadratures are obtained. In the paper [23] DEs for isotropic and
anisotropic media in a half-space with nonlinear permittivity are
shown. The DEs are rational functions with respect to the value of
field’s components at the interface. Authors found the first integral
of the system of differential equations (so called a conservation law).
This is also very interesting work to study.

In the case of TE wave you can see the papers [24, 25, 31, 66].
Propagation of TM wave in terms of the magnetic component are
studied in [32, 33]. The paper [2] is devoted to the question (from
physical standpoint) why it is possible to take into account only one
component of the electric field in the expression for permittivity in
the case of TM waves in a nonlinear layer. The results are compared
with the case of TE waves.

The most important results about TM wave propagation in a
layer with Kerr nonlinearity (system of differential equations, first
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integral) and a circle cylindrical waveguide (system of differential
equations) were obtained in [17, 18] (1971–1972 years). In some
papers (for example, [32]) polarized wave propagation in a layer
with arbitrary nonlinearity is considered. However, DEs were not
obtained and no results about solvability of the boundary eigenvalue
problem were obtained as well. The problem of TM wave propaga-
tion in a layer with Kerr nonlinearity is solved at first for a thin
layer [80] and then for a layer of arbitrary thickness [77, 79, 63].
Theorems of existence and localization of eigenvalues are proved in
[72]. Some numerical results are shown in [74, 75].

In this monograph the DE is an equation with additioanl condi-
tions. Only for linear media (the permittivity is a constant) in a layer
or in a circle cylindrical waveguide the DEs are sufficiently simple
(but even for these cases the DEs are transcendental equations).
For nonlinear layers the DEs are rather complicated combinations
of nonlinear integral equations, where integrands are defined by
implicit algebraic (or transcendental) functions. For the cases of
nonlinear circle cylindrical waveguides some results were obtained
only for Kerr nonlinearity. It should be stressed that in spite of
the fact that DEs are complicated they can be rather easily solved
numerically.

These DEs allow to study both nonlinear materials and nonlin-
ear metamaterials. It should be noticed that in the monograph mate-
rials with arbitrary permittivity and constant positive permeability
are studied. But it is not difficult to take into account the sign of the
permeability. In other words, represented DEs allow to study rather
broad spectrum of materials.

The method of obtaining DEs is called Integral Dispersion Equa-
tions Method. For layers this method allows to study wide class of
nonlinearities for the TM wave and arbitrary nonlinearities for the
TE wave. On the basis of the DEs for linear layers we study linear
metamaterials.

We assume that a permittivity is a diagonal tensor. The tensor
is represented as a diagonal 3 × 3 matrix. The permittivity is a
tensor with different components for anisotropic media (for isotropic
media the permittivity is a scalar). However, for TE waves even for
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anisotropic media only one component of this diagonal tensor is
taken into account. For TM waves we consider both isotropic and
anisotropic media.

When we speak about nonlinear boundary eigenvalue problems
we mean that differential equations and boundary conditions nonline-
arly depend on the spectral parameter and also the differential equa-
tions nonlinearly depend on the unknown functions. All these facts
do not allow to apply well-known methods of investigation of spectral
problems.

Problems of propagation of TE and TM waves in nonlinear
circle cylindrical waveguides are also considered. These problems
are more complicated in comparison with corresponding problems
in nonlinear layers. And even in the case of Kerr nonlinearity the
results are not so complete as in the case in layers.

Let us give a survey of the monograph.
In Chapter 1 the results on electromagnetic wave propagation

in a layer with constant permittivity are laid down. There are a lot
of works where the issue is discussed [1, 16, 19, 40, 64]. Perhaps we
do it in the way, which is more suitable for our goals.

In Chapter 2 we consider TE wave propagation in a linear
layer. The dispersion equation is derived and analyzed. It is proved
that there are no TE waves in a linear metamaterial layer. Some
numerical results are shown. The following works [1, 16, 19, 40, 64]
were very useful for us.

In Chapter 3 it is considered TE wave propagation in a layer
with arbitrary nonlinearity. The permittivity in the layer is an arbi-
trary function with respect to electric field intensity. We derive the
DE of the problem. Using this equation it is possible to study wide
kind of nonlinearity. The problem statement is presented in [17, 18].
In this chapter numerical results for more complicated nonlinearity
than Kerr-type one are shown. The content of the chapter is based
on [70].

In Chapter 4 we apply the general technique (developed in
Chapter 3) to the TE wave propagation in a layer with generalized
Kerr nonlinearity. The DE is derived and discussed. The similar
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problem for Kerr nonlinearity is studied by using elliptic functions
in [73].

In Chapter 5 we discuss TM wave propagation in a layer with
constant permittivity. The permittivity is described by a diagonal
tensor. It turns out that it is possible to consider the layer filled with
metamaterial. The numerical results are shown. Some results of the
chapter were published in [76].

Chapter 6 is devoted to TM wave propagation in a layer with
arbitrary nonlinearity. The permittivity in the layer is an arbitrary
function with respect to electric field intensity. As a matter of fact,
the permittivity is not quite arbitrary function. There is a condition
that the function obeys (details see in the chapter). We derive the
DE of the problem. The problem statement is presented in [17, 18].
The content of the chapter is based on [71].

In Chapter 7 we apply the general technique (developed in
Chapter 6) to the TM wave propagation in a isotropic layer with
Kerr nonlinearity. The DE is derived and discussed. It is shown that
passage to the limit (when the nonlinearity coefficient tends to zero)
gives a linear case discussed in Chapter 5. The first approximation
for eigenvalues of the problem is obtained. Some numerical results
are also presented. The results of the chapter were published in [68,
71, 74, 76–79].

In Chapter 8 we apply the general technique (developed in
Chapter 6) to the TM wave propagation in a anisotropic layer with
Kerr nonlinearity. The DE is derived and discussed. The results of
the chapter is based on [74]. In this paper some numerical results
are also presented.

Chapter 9 is devoted to well-known results about electromag-
netic wave propagation in circle cylindrical waveguides. It is known
that it is possible to study TE and TM waves instead of general
electromagnetic field. This approach allows to pass from partial dif-
ferential equations (PDE) to ordinary differential equations (ODE).
There are a lot of works where the issue is discussed [1, 16, 19, 40, 64].
Perhaps we do it in the way, which is more suitable for our goals.
Also we discuss the existence of nonlinear waves. It appears that
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there are restrictions for existence of nonlinear waves in such wave-
guide structure (for details see the chapter).

In Chapter 10 we discuss TE wave propagation in a circle cylin-
drical waveguide. These are well-known results and we present it for
the convenience of the reader. The dispersion equation is derived.
We refer to the following works [1, 16, 19, 40, 64].

In Chapter 11 TE wave propagation in a circle cylindrical wave-
guide with Kerr nonlinearity is considered. For cylindrical waveguides
we derive DEs as well, but we use integral equations technique
instead of studying differential equations as in Chapters 3,4,6–8. The
existence of eigenvalues is proved for sufficiently small the nonlin-
earity coefficient. Some results of the chapter were published in [49,
54–57].

In Chapter 12 we discuss TM wave propagation in a circle cylin-
drical waveguide. These are well-known results and we present it for
the convenience of the reader. The dispersion equation is derived. It
is also possible to see [1, 16, 19, 40, 64].

In Chapter 13 we consider the problem of TM wave propagation
in a circle cylindrical waveguide with Kerr nonlinearity. In other
respects the brief description of this chapter repeats the description
of Chapter 11. Some results of the chapter were published in [58–60].





PART I

BOUNDARY EIGENVALUE PROBLEMS

FOR THE MAXWELL EQUATIONS

IN LAYERS



C H A P T E R 1

TE AND TM WAVES
GUIDED BY A LAYER

Let us consider electromagnetic waves propagating through a
homogeneous isotropic nonmagnetic dielectric layer. The layer is
located between two half-spaces: x < 0 and x > h in Cartesian
coordinate system Oxyz. The half-spaces are filled with isotropic
nonmagnetic media without any sources and characterized by per-
mittivities ε1 ≥ ε0 and ε3 ≥ ε0, respectively, where ε0 is the per-
mittivity of free space. Assume that everywhere μ = μ0, where μ0

is the permeability of free space.
The electromagnetic field depends on time harmonically [17]

Ẽ (x, y, z, t) = E+ (x, y, z) cosωt+E− (x, y, z) sinωt,

H̃ (x, y, z, t) = H+ (x, y, z) cosωt+H− (x, y, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Ex, Ey, Ez)

T , H = (Hx,Hy,Hz)
T ,

and ( · )T denotes the operation of transposition and

Ex = Ex(x, y, z), Ey = Ey(x, y, z), Ez = Ez(x, y, z),
Hx = Hx(x, y, z), Hy = Hy(x, y, z), Hz = Hz(x, y, z).
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential field components on the
media interfaces x = 0, x = h and the radiation condition at infinity:
the electromagnetic field exponentially decays as |x| → ∞ in the
domains x < 0 and x > h.

The permittivity in the layer is described by the diagonal tensor

ε̃ =

⎛⎝ εxx 0 0
0 εyy 0
0 0 εzz

⎞⎠ ,

where εxx, εyy, and εzz are constants.
The solutions to the Maxwell equations are sought in the entire

space.
The geometry of the problem is shown in Fig. 1. The layer is

infinite along axes Oy and Oz.

0

x

y

z

h

ε = ε3

ε = ε1

ε = ε̃

Fig. 1.

Rewrite system (1) in the coordinate form⎧⎪⎨⎪⎩
∂Hz
∂y − ∂Hy

∂z = −iωεxxEx,
∂Hx
∂z − ∂Hz

∂x = −iωεyyEy,
∂Hy

∂x − ∂Hx
∂y = −iωεzzEz,

⎧⎪⎨⎪⎩
∂Ez
∂y − ∂Ey

∂z = iωμHx,
∂Ex
∂z − ∂Ez

∂x = iωμHy,
∂Ey

∂x − ∂Ex
∂y = iωμHz.

(2)
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We seek surface waves propagating along z boundary of the
layer. For such waves components of the fields have the form

Ex = Ex(x, y)e
iγz , Ey = Ey(x, y)e

iγz , Ez = Ez(x, y)e
iγz ,

Hx = Hx(x, y)e
iγz , Hy = Hy(x, y)e

iγz , Hz = Hz(x, y)e
iγz ,

(3)
where γ is the propagation constant.

Substituting components (3) into system (1) we obtain⎧⎪⎨⎪⎩
∂Hz
∂y − iγHy = −iωεxxEx,

iγHx − ∂Hz
∂x = −iωεyyEy,

∂Hy

∂x − ∂Hx
∂y = −iωεzzEz,

⎧⎪⎨⎪⎩
∂Ez
∂y − iγEy = iωμHx,

iγEx − ∂Ez
∂x = iωμHy,

∂Ey

∂x − ∂Ex
∂y = iωμHz.

(4)

From the first and the fifth equations of this system we obtain

Ex =
ωμ

ik2xx

(
γ

ωμ

∂Ez

∂x
+

∂Hz

∂y

)
, Hy =

ωεxx
ik2xx

(
∂Ez

∂x
+

γ

ωεxx

∂Hz

∂y

)
,

(5)
where k2xx = γ2 − ω2μεxx.

From the second and the forth equations of the latter system
we obtain

Ey = − ωμ

ik2yy

(
∂Hz

∂x
− γ

ωμ

∂Ez

∂y

)
, Hx =

ωεyy
ik2xx

(
γ

ωεyy

∂Hz

∂x
− ∂Ez

∂y

)
,

(6)
where k2yy = γ2 − ω2μεyy.

It is easy to see from formulas (5) and (6) that all the compo-
nents are expressed through only two components Ez and Hz.

What is more, from formulas (5) and (6) we can see that the
electromagnetic field can be represented as a linear combination of
two fields (here the linearity of the Maxwell equations is essential)

E = (0, Ey, 0)
T + (Ex, 0, Ez)

T ,

H = (Hx, 0,Hz)
T + (0, Ey , 0)

T .

This means that in the case of the harmonic fields dependence
on z we can consider two simpler electromagnetic fields

E = (0, Ey, 0)
T , H = (Hx, 0,Hz)

T (7)
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and
E = (Ex, 0, Ez)

T , H = (0,Hy, 0)
T (8)

instead of one electromagnetic field

E = (Ex, Ey, Ez)
T , H = (Hx,Hy,Hz)

T .

Electromagnetic waves (7) and (8) are called TE-polarized elec-
tromagnetic waves1, or simply TE waves and TM-polarized electro-
magnetic waves2, or simply TM waves, respectively.

Let us see what corollaries from Maxwell equations (1) and fields
(7), (8) are implied.

Substituting fields (7) with components

Ey = Ey(x, y)e
iγz , Hx = Hx(x, y)e

iγz , Hz = Hz(x, y)e
iγz

into system (1). We obtain⎧⎪⎨⎪⎩
∂Hz
∂y = 0,

iγHx − ∂Hz
∂x = −iωεyyEy,

−∂Hx
∂y = 0,

⎧⎪⎨⎪⎩
−iγEy = iωμHx,

0 = 0,
∂Ey

∂x = iωμHz.

It follows from the first and the third equations of the system
that Hz and Hx do not depend on y. This implies that Ey does not
depend on z.

Thus we can conclude that in the case of the harmonic fields
dependence on z the components of TE waves have the form

Ey = Ey(x)e
iγz , Hx = Hx(x)e

iγz , Hz = Hz(x)e
iγz . (9)

Substituting fields (8) with components

Ex = Ex(x, y)e
iγz , Ez = Ez(x, y)e

iγz , Hy = Hy(x, y)e
iγz

into system (1). We obtain⎧⎪⎨⎪⎩
−iγHy = −iωεxxEx,

0 = 0,
∂Hy

∂x = −iωεzzEz,

⎧⎪⎨⎪⎩
∂Ez
∂y = 0,

iγEx − ∂Ez
∂x = iωμHy,

−∂Ex
∂y = 0.

1transverse-electric.
2transverse-magnetic.
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It follows from the forth and the sixth equations of the system
that Ez and Ex do not depend on y. This implies that Hy does not
depend on z.

Thus we can conclude that in the case of the harmonic fields
dependence on z the components of TM waves have the form

Ex = Ex(x)e
iγz , Ez = Ez(x)e

iγz , Hy = Hy(x)e
iγz . (10)

Representations (9) and (10) for TE and TM waves give us
an opportunity to pass from partial differential equations (1) to
ordinary differential equations.

As it is known, in homogeneous guided structures, like a layer
with constant permittivity, any electromagnetic wave can be repre-
sented as a superposition of TE and TM waves [43]. This circum-
stance allows to study electromagnetic wave propagation in a linear
layer only for polarized waves. This makes the analysis of the propa-
gation quite simple. For a layer with nonlinear permittivity (when
the permittivity depends on the electric field intensity) the general
solution can not be represented as a superposition of TE and TM
waves. So in the nonlinear case the problem does not break up into
two simpler problems. Therefore studying the propagation of TE
and TM waves in nonlinear layers we, generally speaking, find only
specific solutions of Maxwell equations (1). These solutions corre-
spond to TE and TM waves.



C H A P T E R 2

TE WAVE PROPAGATION
IN A LINEAR LAYER

§1. Statement of the Problem

Let us consider electromagnetic waves propagating through a
homogeneous isotropic nonmagnetic dielectric layer. The layer is
located between two half-spaces: x < 0 and x > h in Cartesian
coordinate system Oxyz. The half-spaces are filled with isotropic
nonmagnetic media without any sources and characterized by per-
mittivities ε1 ≥ ε0 and ε3 ≥ ε0, respectively, where ε0 is the permit-
tivity of free space1. Assume that everywhere μ = μ0, where μ0 is
the permeability of free space.

The electromagnetic field depends on time harmonically [17]

Ẽ (x, y, z, t) = E+ (x, y, z) cosωt+E− (x, y, z) sinωt,

H̃ (x, y, z, t) = H+ (x, y, z) cosωt+H− (x, y, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Ex, Ey, Ez)

T , H = (Hx,Hy,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields is a function of three spatial variables.

1Generally, conditions ε1 ≥ ε0 and ε3 ≥ ε0 are not necessary. They are not
used for derivation of DEs, but they are useful for DEs’ solvability analysis.
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential field components on the
media interfaces x = 0, x = h and the radiation condition at infinity:
the electromagnetic field exponentially decays as |x| → ∞ in the
domains x < 0 and x > h.

The permittivity inside the layer is ε = ε2.
The solutions to the Maxwell equations are sought in the entire

space.
The geometry of the problem is shown in Fig. 1.

0

h

z

x

ε = ε3

ε = ε2

ε = ε1

Fig. 1.

§2. TE Waves

Let us consider TE waves

E = (0, Ey , 0)
T , H = (Hx, 0,Hz)

T ,

where Ey = Ey(x, y, z), Hx = Hx(x, y, z), and Hz = Hz(x, y, z).
Substituting the fields into Maxwell equations (1) we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Hz
∂y = 0,
∂Hx
∂z − ∂Hz

∂x = −iωεEy,
∂Hx
∂y = 0,
∂Ey

∂z = −iωμHx,
∂Ey

∂x = iωμHz.
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It is obvious from the first and the third equations of this system
that Hz and Hx do not depend on y. This implies that Ey does not
depend on y.

Waves propagating along medium interface z depend on z har-
monically. This means that the fields components have the form

Ey = Ey(x)e
iγz , Hx = Hx(x)e

iγz , Hz = Hz(x)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).

So we obtain from the latter system⎧⎪⎨⎪⎩
iγHx(x)−H ′

z(x) = −iωεEy(x),

−iγEy(x) = iωμHx(x),

E′
y(x) = iωμHz(x),

(2)

where ( · )′ ≡ d
dx .

After simple transformation of system (2) we obtain

γ2Ey(x)− E′′
y (x) = ω2μεEy(x).

Let us denote by k20 := ω2με0, and perform the normalization
according to the formulas x̃ = k0x, d

dx = k0
d
dx̃ , γ̃ = γ

k0
, ε̃j =

εj
ε0

(j = 1, 2, 3). Denoting by Y (x̃) := Ey(x̃) and omitting the tilde
symbol from system (2) we have

Y ′′(x) = γ2Y (x)− εY (x). (3)

Introducing the function Z(x) := Y ′(x) we can consider (3) as
the following system of equations{

Y ′(x) = Z(x),

Z ′(x) =
(
γ2 − ε

)
Y (x).

(4)

It is necessary to find eigenvalues γ of the problem that corre-
spond to surface waves propagating along boundaries of the layer
0 < x < h, i.e., the eigenvalues corresponding to the eigenmodes of



24 Part I. Boundary Eigenvalue Problems in Layers

the structure. We seek the real values of spectral parameter γ such
that real solutions Y (x) and Z(x) to system (4) exist.

Note. We consider that γ is a real value, but in the linear case it
is possible to consider the spectral parameter γ as a complex value.
In nonlinear cases under our approach it is impossible to use complex
values of γ.

Also we assume that functions Y and Z are sufficiently smooth

Y (x) ∈ C(−∞,+∞)∩
∩ C1(−∞,+∞) ∩ C2(−∞, 0) ∩C2(0, h) ∩ C2(h,+∞),

Z(x) ∈ C(−∞,+∞) ∩ C1(−∞, 0) ∩ C1(0, h) ∩ C1(h,+∞).

Physical nature of the problem implies these conditions.
We will seek γ under condition max(ε1, ε3) < γ2 < ε2. It should

be noticed that condition γ2 > max(ε1, ε3) holds if at least one of
the values ε1 or ε3 more than zero. If both ε1 < 0 and ε3 < 0, then
γ2 > 0.

§3. Differential Equations of the Problem

In the domain x < 0 we have ε = ε1. From system (4) we obtain
Y ′′ =

(
γ2 − ε1

)
Y . Its general solution is

Y (x) = A1e
−
√

γ2−ε1x +Ae
√

γ2−ε1x.

In accordance with the radiation condition we obtain

Y (x) = Aex
√

γ2−ε1 ,

Z (x) = A
√

γ2 − ε1e
x
√

γ2−ε1 .
(5)

We assume that γ2 − ε1 > 0, otherwise it will be impossible to
satisfy the radiation condition.

In the domain x > h we have ε = ε3. From system (4) we obtain
Y ′′ =

(
γ2 − ε3

)
Y . Its general solution is

Y (x) = B1e
(x−h)

√
γ2−ε3 +Be−(x−h)

√
γ2−ε3 .
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In accordance with the radiation condition we obtain

Y (x) = Be−(x−h)
√

γ2−ε3 ,

Z (x) = −
√

γ2 − ε3Be−(x−h)
√

γ2−ε3 .
(6)

Here for the same reason as above we consider that γ2−ε3 > 0.
Constants A and B in (5) and (6) are defined by transmission

conditions and initial conditions.
Inside the layer 0 < x < h we have ε = ε3. From system (4) we

obtain Y ′′ = (γ2 − ε2)Y . It is possible to consider two cases:
a) γ2− ε2 > 0; and the general solution of system (4) inside the

layer is

Y (x) = C1e
−x

√
γ2−ε2 + C2e

x
√

γ2−ε2 ,

Z (x) =
√
γ2 − ε2

(
−C1e

−x
√

γ2−ε2 + C2e
x
√

γ2−ε2
)
;

(7)

b) γ2−ε2 < 0; and the general solution of system (4) inside the
layer is

Y (x) = C1 sinx
√

ε2 − γ2 + C2 cos x
√

ε2 − γ2,

Z(x) =
√
ε2 − γ2

(
C1 cos x

√
ε2 − γ2 − C2 sinx

√
ε2 − γ2

)
.

(8)

§4. Transmission Conditions

Tangential components of an electromagnetic field are known
to be continuous at media interfaces. In this case the tangential
components are Ey and Hz. Hence we obtain

Ey (h+ 0) = Ey (h− 0) , Ey (0− 0) = Ey (0 + 0) ,
Hz (h+ 0) = Hz (h− 0) , Hz (0− 0) = Hz (0 + 0) .

The continuity conditions for components Ey, Hz and formulas
(2), (4) imply the transmission conditions for Y , Z

[Y ]x=0 = 0, [Y ]x=h = 0, [Z]x=0 = 0, [Z]x=h = 0, (9)

where [f ]x=x0 = lim
x→x0−0

f(x) − lim
x→x0+0

f(x) denotes a jump of the

function f at the interface.
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Denote by Y0 := Y (0− 0), Yh := Y (h+0), Z0 := Z(0− 0), and
Zh := Z(h+ 0). Then, we obtain A = Y0, B = Yh and

Zh = −
√

γ2 − ε3Yh Z0 =
√

γ2 − ε1Y0.

The constant Yh is supposed to be known (initial condition).
In case (a) from transmission conditions (9) and solutions (5)–

(7) we obtain the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A = C1 + C2,

B = C1e
−h

√
γ2−ε2 + C2e

h
√

γ2−ε2 ,√
γ2 − ε1A =

√
γ2 − ε2 (−C1 + C2) ,

−
√

γ2 − ε3B =
√

γ2 − ε2

(
−C1e

−h
√

γ2−ε2 + C2e
h
√

γ2−ε2
)
.

Solving this system we obtain the DE√
γ2 − ε2 −

√
γ2 − ε1√

γ2 − ε2 +
√
γ2 − ε1

·
√
γ2 − ε2 −

√
γ2 − ε3√

γ2 − ε2 +
√

γ2 − ε3
= e2h

√
γ2−ε2 , (10)

where γ2 − ε1 > 0, γ2 − ε2 > 0, γ2 − ε3 > 0.
In case (b) from transmission conditions (9) and solutions (5),

(6), (8) we obtain the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A = C2,

B = C1 sin
√
ε2 − γ2h+C2 cos

√
ε2 − γ2h,√

γ2 − ε1A = C1

√
ε2 − γ2,

−
√
γ2 − ε3B =

=
√

γ2 − ε2

(
−C1 cos

√
ε2 − γ2h− C2 sin

√
ε2 − γ2h

)
.

From this system we find

1√
ε2 − γ2

ε2 − γ2 −
√

γ2 − ε1
√

γ2 − ε3√
γ2 − ε1 +

√
γ2 − ε3

sin
√

ε2 − γ2h =

= cos
√
ε2 − γ2h. (11)
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If cos
√

ε2 − γ2h 
= 0, then we obtain the well-known DE

tg
(√

ε2 − γ2h
)
=

√
ε2 − γ2

(√
γ2 − ε1 +

√
γ2 − ε3

)
ε2 − γ2 −

√
γ2 − ε1

√
γ2 − ε3

, (12)

where γ2 − ε1 > 0, ε2 − γ2 > 0, γ2 − ε3 > 0.
If cos

√
ε2 − γ2h = 0, then we can find eigenvalues in explicit

form.
Let cos

√
ε2 − γ2h = 0, then

√
ε2 − γ2 =

π (2n+ 1)

2h
and γ2 =

4ε2h
2 − π2 (2n+ 1)2

4h2
.

From equation (11) we obtain ε2 − γ2 =
√
γ2 − ε1

√
γ2 − ε3.

From this equation we find γ2. After simple transformation we obtain

h =
π (2n+ 1)

2

√
2ε2 − ε1 − ε3

(ε2 − ε1) (ε2 − ε3)
, γ2 =

ε22 − ε1ε3
2ε2 − ε1 − ε3

, (13)

and under conditions γ2 − ε1 > 0, ε2 − γ2 > 0, γ2 − ε3 > 0 the
radicand in (13) is nonnegative.

In the simplest case when ε1 = ε3 = ε from (13) we obtain

h =
(2n+ 1)π√
2(ε2 − ε)

, γ2 =
ε2 + ε

2
.

Equation (12) can be formally derived from (10). Indeed, if we
simply change in (10) γ2 − ε2 by −(ε2 − γ2), take into account
occurred imaginary unit, then we obtain (12). In the same way it is
possible to derive (10) from (12).

§5. Analysis of Dispersion Equations

It follows from conditions γ2 − ε1 > 0 and γ2 − ε3 > 0 that ε1
and ε3 can be values of arbitrary sign (this is mentioned in §1) in
both DEs (10), (12). Let us consider in detail the case when ε1 ≥ ε0
and ε3 ≥ ε0, where ε0 is the permittivity of free space. It is clear
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that for classical DE (12) we can not study metamaterial in the layer
due to the DE is derived under condition ε2 − γ2 > 0. This means
that ε2 > 0. Studying this DE for metamaterials is of no interest.

Conditions γ2− ε1 > 0 and γ2− ε3 > 0 imply immediately that

γ2 > max(ε1, ε3),

if at least one of the values ε1 or ε3 is more than zero. If both ε1 < 0
and ε3 < 0, then

γ2 > 0.

Let us pass to the analysis of DEs (10) and (12).
Rewrite equation (10) in the following form

h =

ln

(√
γ2−ε2−

√
γ2−ε1√

γ2−ε2+
√

γ2−ε1
·
√

γ2−ε2−
√

γ2−ε3√
γ2−ε2+

√
γ2−ε3

)
2
√

γ2 − ε2
+

iπk√
γ2 − ε2

, (14)

where k ∈ Z.
It is easy to see in (14) that∣∣∣∣∣
√

γ2 − ε2 −
√
γ2 − ε1√

γ2 − ε2 +
√
γ2 − ε1

∣∣∣∣∣ < 1,

∣∣∣∣∣
√

γ2 − ε2 −
√

γ2 − ε3√
γ2 − ε2 +

√
γ2 − ε3

∣∣∣∣∣ < 1.

Under this condition and γ2−ε2 > 0 equation (14) implies that
h < 0. But such a case is impossible due to the value h denotes
thickness of the layer.

Now let us consider equation (12). This equation is well-known
(see, for example [64]). The condition ε2 − γ2 > 0 immediately
implies that ε2 > 0. From this and from analysis of DE (10) it
follows that there are no waves in the layer with negative permittiv-
ity in the case of TE waves!

It is easy to show that equation (12) can be rewritten in the
following form

h = 1√
ε2−γ2

(
arctg

√
ε2−γ2

(√
γ2−ε1+

√
γ2−ε3

)
ε2−γ2−

√
γ2−ε1

√
γ2−ε3

+ π(n+ 1)

)
, (15)

where n ≥ −1 is an integer.
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Indeed, as | arctg x| < π
2 then h < 0 when n + 1 ≤ −1. This

implies that n+ 1 ≥ 0, and we have n ≥ −11.
It is obvious from formula (15) that the line γ2 = ε2 is an

asymptote: h∗ = lim
γ2→ε2−0

h(γ) = +∞. If γ2 > ε2, then we obtain

imaginary value for h. From conditions γ2 > ε2 and γ2 > max(ε1, ε3)
the important conclusion follows: in the case of TE waves in a linear
layer the spectral parameter γ satisfies the following inequalities

max(ε1, ε3) < γ2 < ε2,

where at least one of the values ε1 or ε3 is positive. If both ε1 < 0
and ε3 < 0, then the spectral parameter γ satisfies the following
inequalities

0 < γ2 < ε2.

Introduce the notation ε∗ := max(ε1, ε3), ε∗ := min(ε1, ε3), and
h∗ := lim

γ2→ε∗
h(γ). Then h∗ = 1√

ε2−ε∗ arctg
√

ε∗−ε∗
ε2−ε∗ .

It is obvious that 0 ≤ h∗ < +∞. The value h∗ increases if the
value ε2 − ε∗ decreases.

For DE (15) we obtain the following
Conclusion. There are only finite number of waves in a layer

with constant permittivity. This finite number is equal to the number
of eigenvalues (solutions of the DE). The quantity of waves increases
if the value h increases. If ε∗ 
= ε∗ (in other words, if ε1 
= ε3), then

1The behavior of the function arctg

√
ε2−γ2

(√
γ2−ε1+

√
γ2−ε3

)

ε2−γ2−
√

γ2−ε1

√
γ2−ε3

should be

noticed. The denominator ε2 − γ2 −√
γ2 − ε1

√
γ2 − ε3 vanishes in the certain

point γ2
∗ ∈ (max(ε1, ε3), ε2). This means that the function arctg discontinues

at this point. It is well-known that this discontinuity of the first kind and the
jump is equal to π. This implies that each dispersion curve (DC) consists of two
pieces: the first piece corresponds to γ2 ∈ (max(ε1, ε3), γ

2
∗), and the second one

corresponds to γ2 ∈ (γ2
∗, ε2). If we consider a particular DC, then the first piece

is a part of this DC and the second one is a part of the next DC. Thus the whole
DC consists of the first piece, which belongs to this very DC and of the second
piece, which belongs to the previous DC. These two pieces taken together form
the continuous DC. If n = −1 in (15), then DC h ≡ h(γ) defining by (15), partly
lies in half-plane h < 0 and partly lies in half-plane h > 0. We consider only the
part of the DC that lies in the half-plane h > 0.
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there is h∗ > 0 such that there are no waves in the layer with h < h∗.
This conclusion holds only for a linear waveguide structure.

The DCs are shown in Fig. 2,3.
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Fig. 2. ε1 = 1, ε2 = 5, ε3 = 1.5

The quantity of eigenvalues is defined in the following way: for
example, in Fig. 2 we draw the line which corresponds to layer’s
thickness h (the dashed line h = 10). The quantity of eigenvalues
is equal to the quantity of points where the line intersects the DCs
(there are six intersections in Fig. 2, they are marked by black dots).
It is easy to understand from Fig. 2 why the quantity of propagating
waves (quantity of eigenvalues) increases if the layer’s thickness h
increases.
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Fig. 3. ε1 = −1, ε2 = 5, ε3 = −1.5

In the case ε1 < 0, ε3 > 0 or ε1 > 0, ε3 < 0, the behavior of the
DCs is the same as it is shown in Fig. 3.



C H A P T E R 3

TE WAVE PROPAGATION IN A LAYER
WITH ARBITRARY NONLINEARITY

§1. Statement of the Problem

Let us consider electromagnetic waves propagating through a
homogeneous isotropic nonmagnetic dielectric layer. The layer is
located between two half-spaces: x < 0 and x > h in Cartesian
coordinate system Oxyz. The half-spaces are filled with isotropic
nonmagnetic media without any sources and characterized by per-
mittivities ε1 ≥ ε0 and ε3 ≥ ε0, respectively, where ε0 is the permit-
tivity of free space1. Assume that everywhere μ = μ0, where μ0 is
the permeability of free space.

The electromagnetic field depends on time harmonically [17]

Ẽ (x, y, z, t) = E+ (x, y, z) cosωt+E− (x, y, z) sinωt,

H̃ (x, y, z, t) = H+ (x, y, z) cosωt+H− (x, y, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Ex, Ey, Ez)

T , H = (Hx,Hy,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields is a function of three spatial variables.

1Generally, conditions ε1 ≥ ε0 and ε3 ≥ ε0 are not necessary. They are not
used for derivation of DEs, but they are useful for DEs’ solvability analysis.
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential field components on the
media interfaces x = 0, x = h and the radiation condition at infinity:
the electromagnetic field exponentially decays as |x| → ∞ in the
domains x < 0 and x > h.

The permittivity inside the layer has the form

ε = ε2 + ε0f
(|E|2) ,

where f is an analytical function1.
Also we assume that ε2 > max(ε1, ε3).
The solution to the Maxwell equations are sought in the entire

space.
The geometry of the problem is shown in Fig. 1.
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ε = ε3

ε = ε2 + ε0f
(|E|2)

ε = ε1

Fig. 1.

§2. TE Waves

Let us consider TE waves

E = (0, Ey , 0)
T , H = (Hx, 0,Hz)

T ,

where Ey = Ey(x, y, z), Hx = Hx(x, y, z), and Hz = Hz(x, y, z).

1Everywhere below when we consider an analytical function we mean that it
is the analytical function of a real variable (see the end of § 2).
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Substituting the fields into Maxwell equations (1) we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Hz
∂y = 0,
∂Hx
∂z − ∂Hz

∂x = −iωεEy,
∂Hx
∂y = 0,
∂Ey

∂z = −iωμHx,
∂Ey

∂x = iωμHz.

It is obvious from the first and the third equations of this system
that Hz and Hx do not depend on y. This implies that Ey does not
depend on y.

Waves propagating along medium interface z depend on z har-
monically. This means that the fields components have the form

Ey = Ey(x)e
iγz , Hx = Hx(x)e

iγz , Hz = Hz(x)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).

So we obtain from the latter system⎧⎪⎨⎪⎩
iγHx(x)−H ′

z(x) = −iωεEy(x),

−iγEy(x) = iωμHx(x),

E′
y(x) = iωμHz(x),

(2)

where ( · )′ ≡ d
dx .

After simple transformation of system (2) we obtain

γ2Ey(x)− E′′
y (x) = ω2μεEy(x).

Let us denote by k20 := ω2μ0ε0, and perform the normalization
according to the formulas x̃ = k0x, d

dx = k0
d
dx̃ , γ̃ = γ

k0
, ε̃j =

εj
ε0

(j = 1, 2, 3). Denoting by Y (x̃) := Ey(x̃) and omitting the tilde
symbol, we have

Y ′′(x) = γ2Y (x)− εY (x). (3)
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Introducing the function Z(x) := Y ′(x) we can consider (3) as
the following system of equations{

Y ′(x) = Z(x),

Z ′(x) =
(
γ2 − ε

)
Y (x).

(4)

It is necessary to find eigenvalues γ of the problem that corre-
spond to surface waves propagating along boundaries of the layer
0 < x < h, i.e., the eigenvalues corresponding to the eigenmodes of
the structure. We seek the real values of spectral parameter γ such
that real solutions Y (x) and Z(x) to system (4) exist1 (see also the
note on p. 23). We assume that

ε =

⎧⎪⎨⎪⎩
ε1, x < 0;

ε2 + f
(
Y 2
)
, 0 < x < h;

ε3, x > h.

(5)

Also we assume that functions Y and Z are sufficiently smooth

Y (x) ∈ C(−∞,+∞)∩
∩ C1(−∞,+∞) ∩ C2(−∞, 0) ∩C2(0, h) ∩ C2(h,+∞),

Z(x) ∈ C(−∞,+∞) ∩ C1(−∞, 0) ∩ C1(0, h) ∩ C1(h,+∞).

Physical nature of the problem implies these conditions.
It is clear that system (4) is an autonomous one with analytical

right-hand sides with respect to Y and Z. It is well known (see [5])
that solutions Y , Z of such a system are also analytical functions
with respect to independent variable. This is an important fact for
the DEs’ derivation.

We will seek γ under condition max(ε1, ε3) < γ2 < ε2.

1 In this case |E|2 does not depend on z. Since E =
(
0, Ey(x)e

iγz, 0
)

=
eiγz (0, Ey, 0); therefore, |E| = ∣

∣eiγz
∣
∣ · |Ey |. It is known that

∣
∣eiγz

∣
∣ = 1 as Im γ =

0. Let γ = γ′+ iγ′′. Then, we obtain
∣∣eiγz

∣∣ =
∣
∣
∣eiγ

′z
∣
∣
∣ ·
∣
∣
∣e−γ′′z

∣
∣
∣ = e−γ′′z. If γ′′ �= 0,

then e−γ′′z is a function on z. In this case the component Ey depends on z, but
it contradicts to the choice of Ey(x). So we can consider only real values of γ.
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This condition corresponds to the classical problem of TE wave
propagation in a linear layer, when ε1 ≥ ε0, ε3 ≥ ε0, and ε in the
layer is equal to ε2 and ε2 > max(ε1, ε3). This condition naturally
appears in that problem (see. Ch. 2), therefore we use it to derive the
DEs for a nonlinear layer. In §6 the DE is obtained under the most
general conditions. We also notice that condition γ2 > max(ε1, ε3)
holds if at least one of the values ε1 or ε3 more than zero. If both
ε1 < 0 and ε3 < 0, then γ2 > 0.

§3. Differential Equations of the Problem

In the domain x < 0 we have ε = ε1. From system (4) we obtain
Y ′′ =

(
γ2 − ε1

)
Y . Its general solution is

Y (x) = A1e
−x

√
γ2−ε1 +Aex

√
γ2−ε1 .

In accordance with the radiation condition we obtain

Y (x) = A exp
(
x
√

γ2 − ε1

)
,

Z (x) = A
√

γ2 − ε1 exp
(
x
√

γ2 − ε1

)
.

(6)

We assume that γ2 − ε1 > 0 otherwise it will be impossible to
satisfy the radiation condition.

In the domain x > h we have ε = ε3. From system (4) we obtain
Y ′′ =

(
γ2 − ε3

)
Y . Its general solution is

Y (x) = B1e
(x−h)

√
γ2−ε3 +Be−(x−h)

√
γ2−ε3 .

In accordance with the radiation condition we obtain

Y (x) = B exp
(
− (x− h)

√
γ2 − ε3

)
,

Z (x) = −
√
γ2 − ε3B exp

(
− (x− h)

√
γ2 − ε3

)
.

(7)

Here for the same reason as above we consider that γ2−ε3 > 0.
Constants A and B in (6) and (7) are defined by transmission

conditions and initial conditions.
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Inside the layer 0 < x < h system (4) has the form{
Y ′ (x) = Z (x) ,

Z ′ (x) =
(
γ2 − ε2 − f

(
Y 2
))

Y (x) .
(8)

System (8) has the first integral. So we can study the first-order
equation (either the first or the second in (8)) with the first integral
instead of second-order equation (3). Divide the second equation in
(8) by the other one we obtain

ZdZ +
(
ε2 − γ2 + f

(
Y 2
))

Y dY = 0.

This equation is the total differential equation. Its general so-
lution has the form

Z2 + (ε2 − γ2)Y 2 + ϕ(Y 2) ≡ C, (9)

where ϕ(Y 2) =
∫
f(u)du

∣∣
u=Y 2 , and C is a constant of integration.

§4. Transmission Conditions

and the Transmission Problem

Tangential components of an electromagnetic field are known
to be continuous at media interfaces. In this case the tangential
components are Ey and Hz. Hence we obtain

Ey(h+ 0) = Ey(h− 0), Ey(0− 0) = Ey(0 + 0),

Hz(h+ 0) = Hz(h− 0), Hz(0− 0) = Hz(0 + 0).

The continuity conditions for components Ey, Hz and formulas
(2), (4) imply the transmission conditions for Y , Z

[Y ]x=0 = 0, [Y ]x=h = 0, [Z]x=0 = 0, [Z]x=h = 0, (10)

where [f ]x=x0 = lim
x→x0−0

f(x) − lim
x→x0+0

f(x) denotes a jump of the

function f at the interface.
Denote by Y0 := Y (0− 0), Yh := Y (h+0), Z0 := Z(0− 0), and

Zh := Z(h+ 0). Then, we obtain A = Y0, B = Yh and

Z0 =
√
γ2 − ε1Y0, Zh = −

√
γ2 − ε3Yh.
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The constant Yh is supposed to be known (initial condition).
We also suppose that functions Y (x), Z(x) satisfy the condition

Y (x) = O

(
1

|x|
)
, Z(x) = O

(
1

|x|
)

as |x| → ∞. (11)

Let

D =

(
d
dx 0

0 d
dx

)
,F(X,Z) =

(
X
Z

)
,G(F, γ) =

(
G1

G2

)
,

where Y ≡ Y (x), Z ≡ Z(x) are unknown functions, G1 ≡ G1(F, γ),
G2 ≡ G2(F, γ) are right-hand sides of system (8). The value γ is a
spectral parameter. Rewrite the problem using new notation.

For the half-space x < 0 and ε = ε1 we obtain

DF−
(

0 1
γ2 − ε1 0

)
F = 0. (12)

Inside the layer 0 < x < h and ε = ε2 + f
(
Y 2
)

we have

L(F, γ) ≡ DF−G(F, γ) = 0. (13)

For the half-space x > h and ε = ε3 we obtain

DF−
(

0 1
γ2 − ε3 0

)
F = 0. (14)

Using Zh = −
√
γ2 − ε3Yh and first integral (9) we find the

integration constant value CY
h := C|x=h

CY
h = (ε2 − ε3)Y

2
h + ϕ(Y 2

h ).

Transmission conditions (10) and first integral (9) imply the
equation with respect to Y0

(ε2 − ε3)Y
2
h + ϕ

(
Y 2
h

)
= (ε2 − ε1)Y

2
0 + ϕ

(
Y 2
0

)
. (15)
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Let us formulate the transmission problem (it is possible to
reformulate it as the boundary eigenvalue problem). It is necessary
to find eigenvalues γ and corresponding to them nonzero vectors F
such that F satisfies to equations (12)–(14). Components Y , Z of
vector F satisfy transmission conditions (10), condition (11), and
Y (0) ≡ Y0 is defined from equation (15).

Definition 1. The value γ = γ0 such that nonzero solution F
to problem (12)–(14) exists under conditions (10), (11), and (15) is
called an eigenvalue of the problem. Solution F, corresponding to the
eigenvalue is called an eigenvector of the problem, and components
Y (x) and Z(x) of vector F are called eigenfunctions.

Note. Definition 1 is a nonclassical analog of the known defi-
nition of the characteristic number of a linear operator function
nonlinearly depending on the spectral parameter [20]. This defini-
tion, on the one hand, is an extension of the classic definition of an
eigenvalue to the case of a nonlinear operator function. On the other
hand, it corresponds to the physical nature of the problem.

§5. Dispersion Equation

Introduce the new variables1

τ(x) = ε2 + Y 2(x), η(x) =
Z(x)

Y (x)
. (16)

From (16) we obtain

Y 2 = τ − ε2, Y Z = (τ − ε2)η, Z2 = (τ − ε2)η
2. (17)

System (8) takes the form{
τ ′ = 2(τ − ε2)η,

η′ =
(
γ2 − ε2 − f(τ − ε2)− η2

)
.

(18)

First integral (9) has the form

(τ − ε2)η
2 + (ε2 − γ2)(τ − ε2) + ϕ(τ − ε2) ≡ C. (19)

1 Generally, if the nonlinearity function is a specific one, then it is possible
to choose new variables in another way (see Ch. 7 and 8).
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Generally speaking, equation (19) is a transcendental one with
respect to τ . Its solution τ = τ(η) can be easily expressed in explicit
form only in exceptional cases.

If nonlinearity function f is a polynomial, then equation (19)
is an algebraic equation with respect to τ . The polarization vector
in constitutive relations in the Maxwell equations can be expanded
into a series in |E|. When we consider that nonlinearity function is
a polynomial we simply cut off the series. It is possible to choose the
nonlinearity function in different ways but it is necessary that some
conditions (it will be written below) are satisfied1.

For the values τ(0) and τ(h) we obtain

τ(0) = ε2 + Y 2
0 , τ (h) = ε2 + Y 2

h ;

since Yh is known, so is τ(h).
In accordance with the transmission conditions for η(0) and

η(h) we have

η(0) =
√

γ2 − ε1 > 0, η(h) = −
√
γ2 − ε3 < 0. (20)

From first integral (19), at x = h, we find Cτ
h := C|x=h

Cτ
h = (ε2 − ε3)(τ(h) − ε2) + ϕ(τ(h) − ε2). (21)

Now from first integral (19), using (20) and (21), we find equa-
tion with respect to τ(0):

(ε2 − ε1)(τ(0) − ε2) + ϕ(τ(0) − ε2) =

= (ε2 − ε3)(τ(h) − ε2) + ϕ(τ(h) − ε2). (22)

It is obvious that τ(0) ≥ ε2 since τ(0) = ε2+Y 2
0 and ε2 > 0. For

existing the root τ(0) ≥ ε2 of equation (22) it is necessary to impose
some conditions on the function f . For example, if f is a polynomial
with nonnegative coefficients, then the suitable root exists.

1Different types of nonlinearity functions (that differ from polynomial) are
shown in [4].
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It should be noticed that from equation (22) it can be seen
that if ε1 = ε3, then one of the roots of this equation is τ(h), i.e.,
τ(0) = τ(h). In original variables we obtain Y 2

0 = Y 2
h . The situation

is almost the same for the case of a linear layer (see Ch. 2). There is
a slight difference here between the case of a nonlinear layer and the
case of a linear layer. In the linear case it is always Y 2

0 = Y 2
h when

ε1 = ε3. In the nonlinear case this is only one root of equation (22).
We suppose that the function f satisfies the condition

γ2 − ε2 − f(τ − ε2)− η2 < 0.

It is surely true if f is a polynomial with nonnegative coefficients.
In this case right-hand side of the second equation of system (18)

is negative. This means that the function η decreases for x ∈ (0, h).
From formulas (20) we can see that η(0) > 0 and η(h) < 0. However,
it is possible that there are zeros of the function Y . Since Y and Z are
analytical functions, so is η. This means that η has discontinuities
of the second kind at the points x∗, where Y (x∗) = 0. These points
are poles of the function η.

From first integral (19) we have

η2 =
Cτ
h − ϕ(τ − ε2)− (ε2 − γ2)(τ − ε2)

τ − ε2
.

.
The poles are zeros of the denominator of this expression. Then,

in these points τ∗ = τ(x∗) is such that η∗ = ±∞.
Let us suppose that there are (N +1) points of discontinuities:

x0, ..., xN on the interval (0, h).
The properties of function η = η(x) imply

η (xi − 0) = −∞, η (xi + 0) = +∞, where i = 0, N. (23)

Denote by

w :=
[
γ2 − ε2 − f(τ − ε2)− η2

]−1
,

where w ≡ w(η); and τ = τ(η) is expressed from first integral (19).
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Taking into account our hypothesis we will seek to the solutions
on each interval [0 , x0), (x0, x1), ..., (xN , h]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
η(x0)∫
η(x)

wdη = x+ c0, 0 ≤ x ≤ x0;

η(x)∫
η(xi)

wdη = x+ ci, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN )

wdη = x+ cN , xN ≤ x ≤ h.

(24)

Substituting x = 0, x = xi+1, and x = xN into equations (24)
(into the first, the second, and the third, respectively) and taking
into account (23), we find constants c1, c2, ..., cN+1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −
−∞∫
η(0)

wdη;

ci+1 =
−∞∫
+∞

wdη − xi+1, i = 0, N − 1;

cN+1 =
η(h)∫
+∞

wdη − h.

(25)

Using (25) we can rewrite equations (24) in the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x0)∫
η(x)

wdη = −x+
−∞∫
η(0)

wdη, 0 ≤ x ≤ x0;

η(x)∫
η(xi)

wdη = x+
−∞∫
+∞

wdη − xi+1, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN )

wdη = x+
η(h)∫
+∞

wdη − h, xN ≤ x ≤ h.

(26)

Introduce the notation T := −
+∞∫
−∞

ωdη. It follows from formula

(26) that 0 < xi+1−xi = T < h, where i = 0, N − 1. This implies the
convergence of the improper integral (it will be proved in other way
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below). Now setting x in equations (26) such that all the integrals
on the left side vanish (i.e., x = x0, x = xi, and x = xN ), and sum
all equations (26). We obtain

0 = −x0 +

−∞∫
η(0)

wdη + x0 + T − x1 + . . .

. . .+ xN−1 + T − xN + xN +

η(h)∫
+∞

wdη − h.

Finally we have

−

√
γ2−ε1∫

−
√

γ2−ε3

wdη + (N + 1)T = h. (27)

Expression (27) is the DE, which holds for any finite h. Let γ
be a solution of DE (27) and an eigenvalue of the problem. Then,
there is an eigenfunction Y , which corresponds to the eigenvalue γ.
The eigenfunction Y has N + 1 zeros on the interval (0, h).

Notice that the improper integrals in DE (27) converge. Indeed,
function τ = τ(η) is bounded as η → ∞ since τ = ε2 + Y 2 and Y is
bounded. Then

|w| =
∣∣∣∣ 1

γ2 − ε2 − f(τ − ε2)− η2

∣∣∣∣ ≤ ∣∣∣∣ 1

η2 + α

∣∣∣∣ ,
where α > 0 is a constant. It is obvious that improper integral
+∞∫
−∞

dη
η2+α

converges. Convergence of the improper integrals in (27)

in inner points results from the requirement that right-hand side of
the second equation of system (18) is negative.

Theorem 1. The set of solutions of DE (27) contains the set
of solutions (eigenvalues) of the boundary eigenvalue problem (12)–
(14) with conditions (10), (11), (15).



Ch. 3. TE Waves in a Layer With Arbitrary Nonlinearity 43

Proof. It follows from the method of obtaining of DE (27) from
system (18) that an eigenvalue of the problem (12)–(14) is a solution
of the DE.

It is obvious that the function τ as the function with respect to
η defined from first integral (19) is a multiple-valued function. This
implies that not every solution of DE (27) is an eigenvalue of the
problem. In other words, equation (22) can have several roots τ(0)
such that each of them satisfies the condition τ(0) ≥ ε2. Even in this
case it is possible to find eigenvalues among roots of the DE. Indeed,
when we find a solution γ of DE (27), we can find functions τ(x)
and η(x) from system (18) and first integral (19). From functions
τ(x) and η(x), using formulas (16), (17) we obtain

Y (x) = ±√
τ − ε2 and Z(x) = ±√

τ − ε2|η|. (28)

It is an important question how to choose the sign. Let us
discuss it in detail. We know that the function η monotonically
decreases. If x = x∗ such that η (x∗) = 0, then η (x∗ − 0) > 0,
η (x∗ + 0) < 0; and if x = x∗∗ such that η (x∗∗) = ±∞, then
η (x∗∗ − 0) < 0 and η (x∗∗ + 0) > 0. The function η has no other
points of sign’s reversal. To fix the idea, assume that the initial con-
dition is Yh > 0. If η > 0, then the functions Y and Z have the same
signs; and if η < 0, then Y and Z have different signs. Since Y and
Z are continuous we can choose necessary signs in expressions (28).
Now, when we found the function Y we can calculate τ(0) = ε2+Y 2

0 .
If this calculated value is equal to the value calculated from equation
(22), then the solution γ of the DE is an eigenvalue of the problem
(and is not an eigenvalue otherwise).

If function ϕ such that a unique root τ(0) ≥ ε2 of equation (22)
exists, then we have the following

Theorem 2 (of equivalence). If equation (22) has a unique so-
lution τ(0) ≥ ε2, then boundary eigenvalue problem (12)–(14) with
conditions (10), (11), (15) has a solution (an eigenvalue) if and only
if this eigenvalue is a solution of DE (27).

The proof of this theorem results from the proof of previous
theorem.
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Introduce the notation J(γ, k) := −
η(h)∫
η(0)

wdη + kT , where the

right-hand side is defined by DE (27) and k = 0, N + 1.
Let

hkinf = inf
γ2∈(max(ε1,ε3),ε2)

J(γ, k),

hksup = sup
γ2∈(max(ε1,ε3),ε2)

J(γ, k).

Let us formulate the sufficient condition of existence at least
one eigenvalue of the problem.

Theorem 3. Let h satisfies for a certain k = 0, N + 1 the fol-
lowing two-sided inequality

hkinf < h < hksup,

then boundary eigenvalue problem (12)–(14) with conditions (10),
(11), (15) has at least one solution (an eigenvalue).

The quantities hkinf and hksup can be numerically calculated.

§6. Generalized Dispersion Equation

Here we derive the generalized DE which holds for any real
values ε2. In addition the sign of the right-hand side of the second
equation in system (18)1, and conditions max(ε1, ε3) < γ2 < ε2 or
0 < γ2 < ε2 will not be taken into account. These conditions appear
in the case of a linear layer and are used for derivation of DE (27).
Though in the nonlinear case it is not necessary to limit the value
γ from the right side. At the same time it is clear that γ is limited
from the left side since this limit appears from the solutions in the
half-spaces (where the permittivities are constants).

1Such a condition appears in the analogous problem for TM waves
propagating through a layer with Kerr nonlinearity (see Ch. 7). In Ch. 7 this
condition naturally results from the problem in a linear layer. Of course, it would
be possible to derive generalized DE at once and § 5 can be omitted. However,
when the right-hand side preserves its sign the way of DEs’ derivation is quite
transparent.
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Now we assume that γ satisfies one of the following inequalities

max(ε1, ε3) < γ2 < +∞,

when either ε1 or ε3 is positive, or

0 < γ2 < +∞,

when both ε1 < 0 and ε3 < 0.
At first we derive the DE from system (18) and first integral

(19). After this we discuss the details of the derivation and condi-
tions when the derivation is possible and the DE is well defined.

Using first integral (19) it is possible to integrate formally any
of the equations of system (18). As earlier we integrate the second
equation. We can not obtain a solution on the whole interval (0, h)
since the function η(x) can have break points which belong to (0, h).
It is known that the function η(x) is an analytical one. Therefore
we can conclude that if η(x) has break points when x ∈ (0, h), then
there are only break points of the second kind.

Assume that the function η(x) on the interval (0, h) has N + 1
break points x0, x1, ..., xN .

It should be noticed that

η(xi − 0) = ±∞, η(xi + 0) = ±∞,

where i = 0, N , and signs ± in these formulas are independent and
unknown.

Taking into account the above, solutions are sought on each of
the intervals [0 , x0), (x0, x1), ..., (xN , h]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
η(x0−0)∫
η(x)

wdη = x+ c0, 0 ≤ x ≤ x0;

η(x)∫
η(xi+0)

wdη = x+ ci+1, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN+0)

wdη = x+ cN+1, xN ≤ x ≤ h.

(29)
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From equation (29), substituting x = 0, x = xi+1, x = xN into
the first, the second, and the third equations (29), respectively, we
find required constants c1, c2, ..., cN+1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −
η(x0−0)∫
η(0)

wdη;

ci+1 =
η(xi+1−0)∫
η(xi+0)

wdη − xi+1, i = 0, N − 1;

cN+1 =
η(h)∫

η(xN+0)

wdη − h.

(30)

Using (30) equations (29) take the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x0−0)∫
η(x)

wdη = −x+
η(x0−0)∫
η(0)

wdη, 0 ≤ x ≤ x0;

η(x)∫
η(xi+0)

wdη = x+
η(xi+1−0)∫
η(xi+0)

wdη − xi+1, xi ≤ x ≤ xi+1;

η(x)∫
η(xN+0)

wdη = x+
η(h)∫

η(xN+0)

wdη − h, xN ≤ x ≤ h,

(31)

where i = 0, N − 1.
From formulas (31) we obtain that

xi+1 − xi =

η(xi+1−0)∫
η(xi+0)

wdη, (32)

where i = 0, N − 1.
Expressions 0 < xi+1 − xi < h < ∞ imply that under the

assumption about the break points existence the integral on the

right side converges and
η(xi+1−0)∫
η(xi+0)

wdη > 0.
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In the same way, from the first and the last equations (31) we

obtain that x0 =
η(x0−0)∫
η(0)

wdη and 0 < x0 < h then

0 <

η(x0−0)∫
η(0)

wdη < h < ∞;

and h− xN =
η(h)∫

η(xN+0)

wdη and 0 < h− xN < h then

0 <

η(x0−0)∫
η(0)

wdη < h < ∞.

These considerations yield that the function w(η) has no non-
integrable singularities for η ∈ (−∞,∞). And also this proves that
the assumption about a finite number break points is true.

Now, setting x = x0, x = xi, and x = xN in the first, the
second, and the third equations in (31), respectively, we have that
all the integrals on the left-sides vanish. We add all the equations in
(31) to obtain

0 = −x0 +

η(x0−0)∫
η(0)

wdη + x0 +

η(x1−0)∫
η(x0+0)

wdη − x1 + ...

...+ xN−1 +

η(xN−0)∫
η(xN−1+0)

wdη − xN + xN +

η(h)∫
η(xN+0)

wdη − h. (33)

From (33) we obtain

η(x0−0)∫
η(0)

wdη +

η(h)∫
η(xN+0)

wdη +

N−1∑
i=0

η(xi+1−0)∫
η(xi+0)

wdη = h. (34)
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It follows from formulas (32) that

η(xi + 0) = ±∞ and η(xi − 0) = ∓∞,

where i = 0, N , and it is necessary to choose the infinities of different
signs.

Thus we obtain that

η(x1−0)∫
η(x0+0)

wdη = ... =

η(xN−0)∫
η(xN−1+0)

wdη =: T ′.

Hence x1 − x0 = ... = xN − xN−1.
Now we can rewrite equation (34) in the following form

η(x0−0)∫
η(0)

wdη +

η(h)∫
η(xN+0)

fdη +NT ′ = h.

Let T := −
+∞∫
−∞

wdη, then we finally obtain

−

√
γ2−ε1∫

−
√

γ2−ε3

wdη ± (N + 1)T = h. (35)

Expression (35) is the DE, which holds for any finite h. Let γ
be a solution of DE (35) and an eigenvalue of the problem. Then,
there is an eigenfunction Y , which corresponds to the eigenvalue γ.
The eigenfunction Y has N+1 zeros on the interval (0, h). It should
be noticed that for every number N + 1 it is necessary to solve two
DEs: for N + 1 and for −(N + 1).

Let us formulate the following
Theorem 4. The set of solutions of DE (35) contains the set

of solutions (eigenvalues) of boundary eigenvalues problem (12)–(14)
with conditions (10), (11), (15).
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The proof of this theorem is almost word-by-word coincides to
the proof of Theorem 1.

Now let us review some theoretical treatments of the derivation
of DEs (27) and (35). We are going to discuss the existence and
uniqueness of system’s (8) solution.

Let us consider vector form (13) of system (8):

DF = G(F, λ). (36)

Let the right-hand side G be defined and continuous in the
domain Ω ⊂ R

2, G : Ω → R
2. Also we suppose that G satisfies the

Lipschitz condition on F (locally in Ω)1.
Under these conditions system (8) (or system (36)) has a unique

solution in the domain Ω [8, 41, 22].
It is clear that under these conditions system (18) has a unique

solution (of course, the domain of uniqueness Ω′ for variables τ , η
differs from Ω).

Since we seek bounded solutions Y and Z; therefore,

Ω ⊂ [−m1,m1]× [−m2,m2],

where
max
x∈[0,h]

|Y | < m1, max
x∈[0,h]

|Z| < m2,

and the previous implies that

Ω′ ⊂ [ε2, ε2 +m2
1]× (−∞,+∞).

1 Let x ∈ R
2, Ω be a domain in R

2 and G is a continuous function of two
variables.

Function G : Ω → R
2 satisfies the Lipschitz condition on x (globally in Ω) if

x, x ∈ Ω ⇒ ||G(x)−G(x)|| ≤ L||x− x||,

where L > 0 is a constant which does not depend on points x and x (the Lipschitz
constant).

Function G : Ω → R
2 satisfies the Lipschitz condition on x locally in Ω, if for

any point x0 ∈ Ω exists its neighborhood V (x0), then the section of the function
G in V (x0) satisfies the Lipschitz condition globally in V (x0).
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Under our assumptions the right-hand side of system (36) is
analytical and, therefore, the Lipschitz condition is fulfilled. This
means that for such a system all mentioned statements about exis-
tence and uniqueness of a solution holds.

It is easy to show that there is no point x∗ ∈ Ω′, such that
Y |x=x∗ = 0 and Z|x=x∗ = 0. Indeed, it is known from theory of
autonomous system (see for example [41]) that phase trajectories
do not intersect one another in the system’s phase space when the
right-hand side of the system is continuous and satisfies the Lipschitz
condition. Since Y ≡ 0 and Z ≡ 0 are stationary solutions of system
(8), it is obvious that nonconstant solutions Y and Z can not vanish
simultaneously in a certain point x∗ ∈ Ω′ (otherwise the nonconstant
solutions intersect with the stationary solutions and we obtain a
contradiction).

Note 1. If there is a certain value γ2∗ such that some of the
integrals in DEs (27) or (35) diverge in certain inner points, then
this simply means that the value γ2∗ is not a solution of chosen DE
and the value γ2∗ is not an eigenvalue of the problem.

Note 2. It is necessary to emphasize that this boundary ei-
genvalue problem essentially depends on the initial condition Yh.
The transmission problem for a linear layer does not depend on the
initial condition. If the nonlinearity function is a specific one, then
in some cases it will be possible to normalize the Maxwell equa-
tions in such way that the transmission problem does not depend
on initial condition Yh explicitly (it is possible for example for Kerr
nonlinearity in layers and in circle cylindrical waveguides). Stress
the fact once more that the opportunity of such normalization is
an exceptional case. What is more, in spite of the fact that this
normalization is possible in certain cases it does not mean that the
normalized transmission problem is independent of the initial con-
dition. In this case one of the problem’s parameter depends on the
initial conditions. The way of such a normalization see in Ch. 11, 13.

We derived DEs from the second equation of system (18). It is
possible to do it using the first equation of the system (see p. 130).
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§7. Numerical Results

Let us consider the following nonlinearity (see (5))

f = aY 2 + bY 4 + cY 6 + dY 8,

where a, b, c, and d are arbitrary real constants.
Using DE (35) we calculate dispersion curves (DC). The follow-

ing parameters ε1 = ε3 = 1, ε2 = 3, Yh = 1 are used.
In Fig. 2,a,b the behavior of dispersion curves is shown. The

dashed curves are DCs for the linear layer (when f ≡ 0), the lines
γ2 = 3 are asymptotes for DCs in the linear case, solid curves are
the DCs for the nonlinear case (solutions of DE (35)).
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Figure 2,a. a = b = c = d = 0.05

It follows from numerical calculations (for the case of Kerr
nonlinearity it can be proved strictly) that the function h ≡ h(γ)
defined from equation (35) when f > 0 has the following property:
lim

γ2→+∞
h(γ) = 0. This means that in the nonlinear case every DC

has an asymptote, and the asymptote is h = 0. How are the value of
the propagation constant and its number defined? For example, see
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Fig. 2,b. The line h = 13 corresponds to the layer’s thickness. For
the linear layer in this case there are 6 propagation constants (black
dots where the line h = 13 intersects the dashed DCs). These propa-
gation constants are eigenvalues of the problem correspond to the
eigenmodes. In the case of the nonlinear layer in Fig. 2,b are shown
4 eigenvalues (uncolored dots). These eigenvalues corresponds to 4
eigenmodes. Taking the above into account it is easy to understand
that in the nonlinear case there are infinite number of eigenvalues.
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Figure 2,b. a = 0.05, b = c = d = 0.005



C H A P T E R 4

TE WAVE PROPAGATION IN A LAYER
WITH GENERALIZED KERR NONLINEARITY

§1. Statement of the Problem

Let us consider electromagnetic waves propagating through a
homogeneous isotropic nonmagnetic dielectric layer. The layer is
located between two half-spaces: x < 0 and x > h in Cartesian
coordinate system Oxyz. The half-spaces are filled with isotropic
nonmagnetic media without any sources and characterized by per-
mittivities ε1 ≥ ε0 and ε3 ≥ ε0, respectively, where ε0 is the permit-
tivity of free space1. Assume that everywhere μ = μ0, where μ0 is
the permeability of free space.

The electromagnetic field depends on time harmonically [17]

Ẽ (x, y, z, t) = E+ (x, y, z) cosωt+E− (x, y, z) sinωt,

H̃ (x, y, z, t) = H+ (x, y, z) cosωt+H− (x, y, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Ex, Ey, Ez)

T , H = (Hx,Hy,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields is a function of three spatial variables.

1Generally, conditions ε1 ≥ ε0 and ε3 ≥ ε0 are not necessary. They are not
used for derivation of DEs, but they are useful for DEs’ solvability analysis.
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential field components on the
media interfaces x = 0, x = h and the radiation condition at infinity:
the electromagnetic field exponentially decays as |x| → ∞ in the
domains x < 0 and x > h.

The permittivity inside the layer has the form1

ε = ε2 + a|E|2 + b|E|4,
where ε2 is the constant part of the permittivity; a > 0, b > 0 are
the nonlinearity coefficients. We assume that ε2 > max(ε1, ε3). In §6
we assume that ε2, a, b are arbitrary real constants.

The solutions to the Maxwell equations are sought in the entire
space.

The geometry of the problem is shown in Fig. 1.

0

h

z

x
ε = ε3

ε = ε2 + a|E|2 + b|E|4

ε = ε1

Fig. 1.

§2. TE Waves

Let us consider TE waves

E = (0, Ey , 0)
T , H = (Hx, 0,Hz)

T ,

where Ey = Ey(x, y, z), Hx = Hx(x, y, z), and Hz = Hz(x, y, z).
1Such a nonlinearity is called generalized Kerr nonlinearity; if b = 0, then we

obtain Kerr nonlinearity; if a = b = 0, then we obtain the linear case studied in
Ch. 2.
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Substituting the fields into Maxwell equations (1) we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Hz
∂y = 0,
∂Hx
∂z − ∂Hz

∂x = −iωεEy,
∂Hx
∂y = 0,
∂Ey

∂z = −iωμHx,
∂Ey

∂x = iωμHz.

It is obvious from the first and the third equations of this system
that Hz and Hx do not depend on y. This implies that Ey does not
depend on y.

Waves propagating along medium interface z depend on z har-
monically. This means that the fields components have the form

Ey = Ey(x)e
iγz ,Hx = Hx(x)e

iγz ,Hz = Hz(x)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).

So we obtain from the latter system⎧⎪⎨⎪⎩
iγHx(x)−H ′

z(x) = −iωεEy(x),

−iγEy(x) = iωμHx(x),

E′
y(x) = iωμHz(x),

(2)

where ( · )′ ≡ d
dx .

After simple transformation of system (2) we obtain

γ2Ey (x)− E′′
y (x) = ω2μεEy (x) .

Let us denote by k20 := ω2μ0ε0, and perform the normalization
according to the formulas x̃ = k0x, d

dx = k0
d
dx̃ , γ̃ = γ

k0
, ε̃j =

εj
ε0

(j = 1, 2, 3), ã = a
ε0

, b̃ = b
ε0

. Denoting by Y (x̃) := Ey(x̃) and
omitting the tilde symbol, we have

Y ′′ (x) = γ2Y (x)− εY (x) . (3)
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Introducing the function Z(x) := Y ′(x) we can consider (3) as
the following system of equations{

Y ′(x) = Z(x),

Z ′(x) =
(
γ2 − ε

)
Y (x).

(4)

It is necessary to find eigenvalues γ of the problem that corre-
spond to surface waves propagating along boundaries of the layer
0 < x < h, i.e., the eigenvalues corresponding to the eigenmodes of
the structure. We seek the real values of spectral parameter γ such
that real solutions Y (x) and Z(x) to system (4) exist (see the note
on p. 23 and the footnote on p. 33). We assume that

ε =

⎧⎪⎨⎪⎩
ε1, x < 0;

ε2 + aY 2 + bY 4, 0 < x < h;

ε3, x > h.

(5)

Also we assume that functions Y and Z are sufficiently smooth

Y (x) ∈ C(−∞,+∞)∩
∩ C1(−∞,+∞) ∩ C2(−∞, 0) ∩C2(0, h) ∩ C2(h,+∞),

Z(x) ∈ C(−∞,+∞) ∩ C1(−∞, 0) ∩ C1(0, h) ∩ C1(h,+∞).

Physical nature of the problem implies these conditions.
It is clear that system (4) is an autonomous one with analytical

right-hand sides with respect to Y and Z. It is well known (see [5])
that solutions Y and Z of such a system are also analytical functions
with respect to independent variable. This is an important fact for
DEs’ derivation.

We will seek γ under condition max(ε1, ε3) < γ2 < ε2.
This condition corresponds to the classical problem of TE wave

propagating in a linear layer, when ε1 ≥ ε0, ε3 ≥ ε0, and ε in the
layer is equal to ε2 and ε2 > max(ε1, ε3). This condition naturally
appears in that problem (see. Ch. 2), therefore we use it to derive the
DEs for a nonlinear layer. In §6 the DE is obtained under the most
general conditions. We also notice that condition γ2 > max(ε1, ε3)
holds if at least one of the values ε1 or ε3 more than zero. If both
ε1 < 0 and ε3 < 0, then γ2 > 0.
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§3. Differential Equations of the Problem

In the domain x < 0 we have ε = ε1. From system (4) we obtain
Y ′′ =

(
γ2 − ε1

)
Y . Its general solution is

Y (x) = A1e
−x

√
γ2−ε1 +Aex

√
γ2−ε1 .

In accordance with the radiation condition we obtain

Y (x) = A exp
(
x
√

γ2 − ε1

)
,

Z (x) = A
√

γ2 − ε1 exp
(
x
√

γ2 − ε1

)
.

(6)

We assume that γ2 − ε1 > 0 otherwise it will be impossible to
satisfy the radiation condition.

In the domain x > h we have ε = ε3. From system (4) we obtain
Y ′′ =

(
γ2 − ε3

)
Y . Its general solution is

Y (x) = B1e
(x−h)

√
γ2−ε3 +Be−(x−h)

√
γ2−ε3 .

In accordance with the radiation condition we obtain

Y (x) = B exp
(
− (x− h)

√
γ2 − ε3

)
,

Z (x) = −
√
γ2 − ε3B exp

(
− (x− h)

√
γ2 − ε3

)
.

(7)

Her for the same reason as above we consider that γ2 − ε3 > 0.
Constants A and B in (6) and (7) are defined by transmission

conditions and initial conditions.
Inside the layer 0 < x < h system (4) takes the form{

Y ′(x) = Z(x),

Z ′(x) = (γ2 − ε2 − aY 2(x)− bY 4(x))Y (x).
(8)

System (8) has the first integral. So we can study the first-
order equation (either the first or the second one in (8)) with the
first integral instead of second-order equation (3). Divide the second
equation in (8) by the other one we obtain

ZdZ + (ε2 − γ2 + aY 2 + bY 4)Y dY = 0.
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This equation is the total differential equation. Its general so-
lution has the form

6Z2 + 6(ε2 − γ2)Y 2 + 3aY 4 + 2bY 6 ≡ C, (9)

where C is a constant of integration.

§4. Transmission Conditions

and the Transmission Problem

Tangential components of an electromagnetic field are known
to be continuous at media interfaces. In this case the tangential
components are Ey and Hz. Hence we obtain

Ey(h+ 0) = Ey(h− 0), Ey(0− 0) = Ey(0 + 0),

Hz(h+ 0) = Hz(h− 0), Hz(0− 0) = Hz(0 + 0).

The continuity conditions for components Ey, Hz and formulas
(2), (4) imply the transmission conditions for Y , Z

[Y ]x=0 = 0, [Y ]x=h = 0, [Z]x=0 = 0, [Z]x=h = 0, (10)

where [f ]x=x0 = lim
x→x0−0

f(x) − lim
x→x0+0

f(x) denotes a jump of the

function f at the interface.
Denote by Y0 := Y (0− 0), Yh := Y (h+0), Z0 := Z(0− 0), and

Zh := Z(h+ 0). Then, we obtain A = Y0, B = Yh and

Z0 =
√
γ2 − ε1Y0, Zh = −

√
γ2 − ε3Yh.

The constant Yh is supposed to be known (initial condition).
We also suppose that functions Y (x), Z(x) satisfy the condition

Y (x) = O

(
1

|x|
)
, Z(x) = O

(
1

|x|
)

as |x| → ∞. (11)
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Let

D =

(
d
dx 0

0 d
dx

)
,F(X,Z) =

(
X
Z

)
,G(F, γ) =

(
G1

G2

)
,

where Y ≡ Y (x), Z ≡ Z(x) are unknown functions, G1 ≡ G1(F, γ),
G2 ≡ G2(F, γ) are right-hand sides of system (8). The value γ is a
spectral parameter. Rewrite the problem using new notation.

For the half-space x < 0 and ε = ε1 we obtain

DF−
(

0 1
γ2 − ε1 0

)
F = 0. (12)

Inside the layer 0 < x < h and ε = ε2 + aY 2 + bY 4 we have

L(F, γ) ≡ DF−G(F, γ) = 0. (13)

For the half-space x > h and ε = ε3 we obtain

DF−
(

0 1
γ2 − ε3 0

)
F = 0. (14)

Substituting the value Yh into first integral (9) we find the
integration constant value CY

h := C|x=h

6Z2
h + 6(ε2 − γ2)Y 2

h + 3aY 4
h + 2bY 6

h = CY
h .

Taking into account that Zh = −
√
γ2 − ε3Yh we finally obtain

CY
h = 6(ε2 − ε3)Y

2
h + 3aY 4

h + 2bY 6
h .

First integral (9), the value CY
h , and the value Z0 =

√
γ2 − ε1Y0

imply the equation with respect to Y 2
0 :

6(ε2 − ε1)Y
2
0 + 3aY 4

0 + 2bY 6
0 = 6(ε2 − ε3)Y

2
h + 3aY 4

h + 2bY 6
h . (15)

It is easy to see from equation (15) that under condition ε1 = ε3
it has at least one root Y 2

h , i.e., Y 2
0 = Y 2

h . It should be noticed that
in a linear case we always have Y 2

0 = Y 2
h . In the nonlinear case it is

only one of the roots.
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Let us formulate the transmission problem (it is possible to
reformulate it as the boundary eigenvalue problem). It is necessary
to find eigenvalues γ and corresponding to them nonzero vectors F
such that F satisfies to equations (12)–(14). Components Y , Z of
vector F satisfy transmission conditions (10), condition (11), and
Y (0) ≡ Y0 is defined from equation (15).

Definition 1. The value γ = γ0 such that nonzero solution F
to problem (12)–(14) exists under conditions (10), (11), and (15) is
called an eigenvalue of the problem. Solution F, corresponding to the
eigenvalue is called an eigevector of the problem, and components
Y (x) and Z (x) of vector F are called eigenfunctions (see the note
on p. 37).

§5. Dispersion Equation

Introduce the new variables

τ(x) = ε2 + Y 2(x), η(x) =
Z(x)

Y (x)
, (16)

from (16) we obtain

Y 2 = τ − ε2, Y Z = (τ − ε2)η, Z2 = (τ − ε2)η
2. (17)

System (8) takes the form{
τ ′ = 2(τ − ε2)η,

η′ = γ2 − ε2 − a(τ − ε2)− b(τ − ε2)
2 − η2.

(18)

First integral (9) has the form

η2 =
C − 6(ε2 − γ2)(τ − ε2)− 3a(τ − ε2)

2 − 2b(τ − ε2)
3

6(τ − ε2)
. (19)

It is easy to see from first integral (19) that there are algebraic
dependence between functions τ and η. The function τ = τ(η) is
expressed from (19) by the Cardanus formulas [28].

From formulas (16) we obtain τ(0) = ε2 + Y 2
0 , τ (h) = ε2 + Y 2

h ;
since Yh is known, so is τ(h).
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In accordance with the transmission conditions (10) for η(0)
and η(h) we have

η(0) =
√

γ2 − ε1 > 0, η(h) = −
√
γ2 − ε3 < 0. (20)

From first integral (19), at x = h, we find Cτ
h := C|x=h

Cτ
h = 6(ε2 − ε3)(τ(h)− ε2) + 3a(τ(h)− ε2)

2 +2b(τ(h)− ε2)
3. (21)

Now from first integral (19), using (20) and (21), we find the
equation with respect to τ(0):

6(ε2 − ε1)(τ(0) − ε2) + 3a(τ(0) − ε2)
2 + 2b(τ(0) − ε2)

3 =

= 6(ε2 − ε3)(τ(h) − ε2) + 3a(τ(h) − ε2)
2 + 2b(τ(h) − ε2)

3. (22)

It is obvious that τ(0) ≥ ε2 since τ(0) = ε2 + Y 2
0 and ε2 > 0.

It is easy to show that under conditions ε2 − ε1 > 0, ε2 − ε3 > 0,
a > 0, and b > 0 such a root exists. Indeed, rewrite equation (22)
in the following form a3x

3 + a2x
2 + a1x = a0, where x = τ(0) − ε2

and a0, a1, a2, a4 all are positive. Then, this equation has the root
x > 0. This implies that equation (22) has the root τ(0) > ε2.

It should be noticed that from equation (22) we can see that
if ε1 = ε3, then one of the roots of this equation is τ(h), i.e.,
τ(0) = τ(h). In original variables we obtain Y 2

0 = Y 2
h . The situation

is almost the same for the case of a linear layer (see Ch. 1). There is
a slight difference here between the case of the nonlinear layer and
the case of the linear layer. In the linear case it is always Y 2

0 = Y 2
h

when ε1 = ε3. In the nonlinear case it is only one root of equation
(22).

Under our assumptions the right-hand side of the second equa-
tion of system (18) is negative. This means that function η decreases
when x ∈ (0, h). However it is possible that there are zeros of the
function Y . Since Y and Z are analytical functions, so is η. This
means that η has discontinuities of the second kind at the points x∗,
where Y (x∗) = 0. These points are poles of the function η.

These poles are zeros of denominator of the first integral. Then,
in these points τ∗ = τ(x∗) is such that η∗ = ±∞.
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Let us suppose that there are (N +1) points of discontinuities:
x0, ..., xN on interval x ∈ (0, h).

The properties of function η = η(x) imply

η(xi − 0) = −∞, η(xi + 0) = +∞, where i = 0, N. (23)

Denote by

w :=
[
γ2 − ε2 − a(τ − ε2)− b(τ − ε2)

2 − η2
]−1

,

where w ≡ w(η); and τ = τ(η) is expressed from first integral (19).
Taking into account our hypothesis we will seek to the solutions

on each interval [0 , x0), (x0, x1), ..., (xN , h]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
η(x0)∫
η(x)

wdη = x+ c0, 0 ≤ x ≤ x0;

η(x)∫
η(xi)

wdη = x+ ci, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN )

wdη = x+ cN , xN ≤ x ≤ h.

(24)

Substituting x = 0, x = xi+1, and x = xN into equations (24)
(into the first, the second, and the third, respectively) and taking
into account (23), we find constants c1, c2, ..., cN+1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −
−∞∫
η(0)

wdη;

ci+1 =
−∞∫
+∞

wdη − xi+1, i = 0, N − 1;

cN+1 =
η(h)∫
+∞

wdη − h.

(25)
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Using (25) we can rewrite equations (24) in the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x0)∫
η(x)

wdη = −x+
−∞∫
η(0)

wdη, 0 ≤ x ≤ x0;

η(x)∫
η(xi)

wdη = x+
−∞∫
+∞

wdη − xi+1, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN )

wdη = x+
η(h)∫
+∞

wdη − h, xN ≤ x ≤ h.

(26)

Introduce the notation T := −
+∞∫
−∞

ωdη. It follows from formula

(26) that 0 < xi+1−xi = T < h, where i = 0, N − 1. This implies the
convergence of the improper integral (it will be proved in other way
below). Now consider x in equations (26) such that all the integrals
on the left side vanish (i.e. x = x0, x = xi, and x = xN ), and sum
all equations (26). We obtain

0 = −x0+

−∞∫
η(0)

wdη+x0+T−x1+...+xN−1+T−xN+xN+

η(h)∫
+∞

wdη−h.

Finally we have

−

√
γ2−ε1∫

−
√

γ2−ε3

wdη + (N + 1)T = h. (27)

Expression (27) is the DE, which holds for any finite h. Let γ
be a solution of DE (27) and an eigenvalue of the problem. Then,
there is an eigenfunction Y , which corresponds to the eigenvalue γ.
The eigenfunction Y has N + 1 zeros on the interval (0, h).

Notice that improper integrals in DE (27) converge. Indeed,
function τ = τ(η) is bounded as η → ∞ since τ = ε2 + Y 2 and Y is
bounded. Then

|w| =
∣∣∣∣ 1

γ2 − ε2 − a(τ − ε2)− b(τ − ε2)2 − η2

∣∣∣∣ ≤ ∣∣∣∣ 1

η2 + α

∣∣∣∣ ,
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where α > 0 is a constant. It is obvious that improper integral
+∞∫
−∞

dη
η2+α

converges. Converges of the improper integrals in (27) in

inner points results from the requirement that right-hand side of the
second equation of system (18) is negative.

Theorem 1. The set of solutions of DE (27) contains the set
of solutions (eigenvalues) of the boundary eigenvalue problem (12)–
(14) with conditions (10), (11).

Proof. It follows from the method of obtaining of DE (27) from
system (18) that an eigenvalue of the problem (12)–(14) is a solution
of the DE.

It is obvious that the function τ as the function with respect
to η defined from first integral (19) is a multiple-valued function.
This implies that not every solution of DE (27) is an eigenvalue
of the problem. In other words, there can be several roots τ(0) of
equation (22) such that each of them satisfies the condition τ(0) ≥
ε2. Even in this case it is possible to find eigenvalues among roots
of the DE. Indeed, when we find a solution γ of DE (27), we can
find functions τ(x) and η(x) from system (18) and first integral
(19). From functions τ(x) and η(x) and using formulas (16), (17) we
obtain

Y (x) = ±√
τ − ε2 and Z(x) = ±√

τ − ε2|η|. (28)

It is an important question how to choose the sign. Let us
discuss it in detail. We know that the function η monotonically
decreases. If x = x∗ such that η(x∗) = 0 then η(x∗ − 0) > 0,
η(x∗ + 0) < 0; and if x = x∗∗ such that η(x∗∗) = ±∞, then
η(x∗∗ − 0) < 0 and η(x∗∗ + 0) > 0. The function η has no other
points of sign’s reversal. To fix the idea, assume that the initial con-
dition is Yh > 0. If η > 0, then functions Y and Z have the same
signs; if η < 0, then Y and Z have different signs. Since X and Z are
continuous functions we can choose necessary signs in expressions
(28). Now, when we have function Y we can calculate τ(0) = ε2+Y 2

0 .
If this calculated value is equal to the value calculated from equation
(22), then the solution γ of the DE is an eigenvalue of the problem
(and is not an eigenvalue otherwise).
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If there is a unique root τ(0) ≥ ε2 of equation (22), then we
have the following

Theorem 2 (of equivalence). If equation (22) has a unique so-
lution τ(0) ≥ ε2, then boundary eigenvalue problem (12)–(14) with
conditions (10), (11), (15) has a solution (an eigenvalue) if and only
if this eigenvalue is a solution of DE (27).

The proof of this theorem results from the proof of previous
theorem.

Introduce the notation J(γ, k) := −
η(h)∫
η(0)

wdη + kT , where the

right-hand side is defined by DE (27) and k = 0, N + 1.
Let

hkinf = inf
γ2∈(max(ε1,ε3),ε2)

J(γ, k),

hksup = sup
γ2∈(max(ε1,ε3),ε2)

J(γ, k).

Let us formulate the sufficient condition of existence at least
one eigenvalue of the problem.

Theorem 3. Let h satisfies for a certain k = 0, N + 1 the fol-
lowing two-sided inequality

hkinf < h < hksup,

then the boundary eigenvalue problem (12)–(14) with conditions (10),
(11), (15) has at least one solution (an eigenvalue).

The quantities hkinf and hksup can be numerically calculated.

§6. Generalized Dispersion Equation

Here we derive the generalized DE which holds for any real
values ε2, a, and b. In addition the sign of the right-hand side of
the second equation in system (18) (see the footnote on p. 43), and
conditions max(ε1, ε3) < γ2 < ε2 or 0 < γ2 < ε2 are not taken
into account. These conditions appear in the case of a linear layer
and are used for derivation of DE (27). Though in the nonlinear
case it is not necessary to the limit value γ2 from the right side. At
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the same time it is clear that γ2 is limited from the left side since
this limit appears from the solutions in the half-spaces (where the
permittivities are constants).

Now we assume that γ satisfies one of the following inequalities

max(ε1, ε3) < γ2 < +∞,

when either ε1 or ε3 is positive, or

0 < γ2 < +∞,

when both ε1 < 0 and ε3 < 0.
At first we derive the DE from system (18) and first integral

(19). After this we discuss the details of the derivation and condi-
tions when the derivation is possible and the DE is well defined.

Using first integral (19) it is possible to integrate formally any
of the equations of system (18). As earlier we integrate the second
equation. We can not obtain a solution on the whole interval (0, h)
since the function η(x) can have break points which belong to (0, h).
It is known that the function η(x) is an analytical one. Therefore
we can conclude that if η(x) has break points when x ∈ (0, h), then
there are only break points of the second kind. It can be proved in
other way. Indeed, it is easy to see that the solution of system (8) are
expressed through elliptic functions. This implies that function η(x)
has finite number second-kind break points on the interval (0, h) and
has no other break points.

Assume that the function η(x) on the interval (0, h) has N + 1
break points x0, x1, ..., xN .

It should be noticed that

η(xi − 0) = ±∞, η(xi + 0) = ±∞,

where i = 0, N , and signs ± in these formulas are independent and
unknown.
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Taking into account the above, solutions are sought on each
interval [0 , x0), (x0, x1), ..., (xN , h]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
η(x0−0)∫
η(x)

wdη = x+ c0, 0 ≤ x ≤ x0;

η(x)∫
η(xi+0)

wdη = x+ ci+1, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN+0)

wdη = x+ cN+1, xN ≤ x ≤ h.

(29)

From equations (29), substituting x = 0, x = xi+1, and x = xN
into the first, the second, and the third equations (29), respectively,
we find required constants c1, c2, ..., cN+1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −
η(x0−0)∫
η(0)

wdη;

ci+1 =
η(xi+1−0)∫
η(xi+0)

wdη − xi+1, i = 0, N − 1;

cN+1 =
η(h)∫

η(xN+0)

wdη − h.

(30)

Using (30) equations (29) take the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x0−0)∫
η(x)

wdη = −x+
η(x0−0)∫
η(0)

wdη, 0 ≤ x ≤ x0;

η(x)∫
η(xi+0)

wdη = x+
η(xi+1−0)∫
η(xi+0)

wdη − xi+1, xi ≤ x ≤ xi+1;

η(x)∫
η(xN+0)

wdη = x+
η(h)∫

η(xN+0)

wdη − h, xN ≤ x ≤ h,

(31)

where i = 0, N − 1.
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From formulas (31) we obtain that

xi+1 − xi =

η(xi+1−0)∫
η(xi+0)

wdη, (32)

where i = 0, N − 1.
Expressions 0 < xi+1 − xi < h < ∞ imply that under the

assumption about the break points existence the integral on the

right side converges and
η(xi+1−0)∫
η(xi+0)

wdη > 0.

In the same way, from the first and the last equations (31) we

obtain that x0 =
η(x0−0)∫
η(0)

wdη and 0 < x0 < h then

0 <

η(x0−0)∫
η(0)

wdη < h < ∞;

and h− xN =
η(h)∫

η(xN+0)

wdη and 0 < h− xN < h then

0 <

η(x0−0)∫
η(0)

wdη < h < ∞.

These considerations yield that the function w(η) has no non-
integrable singularities for η ∈ (−∞,∞). And also this proves that
the assumption about a finite number break points is true.

Now, setting x = x0, x = xi, and x = xN in the first, the
second, and the third equations in (31), respectively, we have that
al integrals on the left-sides vanish. We add all the equations in (31)
to obtain
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0 = −x0 +

η(x0−0)∫
η(0)

wdη + x0 +

η(x1−0)∫
η(x0+0)

wdη − x1 + ...

...+ xN−1 +

η(xN−0)∫
η(xN−1+0)

wdη − xN + xN +

η(h)∫
η(xN+0)

wdη − h. (33)

From (33) we obtain
η(x0−0)∫
η(0)

wdη +

η(h)∫
η(xN+0)

wdη +
N−1∑
i=0

η(xi+1−0)∫
η(xi+0)

wdη = h. (34)

It follows from formulas (32) that

η (xi + 0) = ±∞ and η (xi − 0) = ∓∞,

where i = 0, N , and it is necessary to choose the infinities of different
signs.

Thus we obtain that
η(x1−0)∫

η(x0+0)

wdη = ... =

η(xN−0)∫
η(xN−1+0)

wdη =: T ′,

Hence x1 − x0 = ... = xN − xN−1.
Now we can rewrite equation (34) in the following form

η(x0−0)∫
η(0)

wdη +

η(h)∫
η(xN+0)

fdη +NT ′ = h.

Let T := −
+∞∫
−∞

wdη, then we finally obtain

−

√
γ2−ε1∫

−
√

γ2−ε3

wdη ± (N + 1)T = h. (35)



70 Part I. Boundary Eigenvalue Problems in Layers

Expression (35) is the DE, which holds for any finite h. Let γ
be a solution of DE (35) and an eigenvalue of the problem. Then,
there is an eigenfunction Y , which corresponds to the eigenvalue γ.
The eigenfunction Y has N+1 zeros on the interval (0, h). It should
be noticed that for every number N + 1 it is necessary to solve two
DEs: for N + 1 and for −(N + 1).

Let us formulate the following
Theorem 4. The set of solutions of DE (35) contains the set

of solutions (eigenvalues) of boundary eigenvalue problem (12)–(14)
with conditions (10), (11), (15).

The proof of this theorem is almost word-by-word coincides to
the proof of the Theorem 1.

Now let us review some theoretical treatments of the derivation
of DEs (27) and (35). We are going to discuss the existence and
uniqueness of system’s (8) solution.

Let us consider vector form (13) of system (8):

DF = G(F, λ). (36)

Let the right-hand side G be defined and cotinuous in the
domain Ω ⊂ R

2, G : Ω → R
2. Also we suppose that G satisfies

the Lipschitz condition on F (locally in Ω)1.
Under these conditions system (8) (or system (36)) has a unique

solution in the domain Ω [8, 41, 22].
It is clear that under these conditions system (18) has a unique

solution (of course, the domain of uniqueness Ω′ for variables τ , η
differs from Ω).

Since we seek bounded solutions Y and Z; therefore,

Ω ⊂ [−m1,m1]× [−m2,m2],

where
max
x∈[0,h]

|Y | < m1, max
x∈[0,h]

|Z| < m2,

and the previous implies that

Ω′ ⊂ [ε2, ε2 +m2
1]× (−∞,+∞).

1About the Lipschitz condition see the footnote on p. 48
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Under our assumptions the right-hand side of system (36) is
analytical and, therefore, the Lipschitz condition is fulfilled. This
means that for such a system all mentioned statements about exis-
tence and uniqueness of a solution hold (also see the end of the last
paragraph of Ch. 3).

Note 1. If there is a certain value γ2∗ such that some of the
integrals in DEs (27) or (35) diverge in certain inner points, then
this simply means that the value γ2∗ is not a solution of chosen DE
and the value γ2∗ is not an eigenvalue of the problem.

Note 2. This problem depends on the initial condition Yh, see
the note on p. 49 for further details.

We derived the DEs from the second equation of system (18).
It is possible to do it using the first equation of the system (see
p. 130).



C H A P T E R 5

TM WAVE PROPAGATION
IN A LINEAR LAYER

§1. Statement of the Problem

Let us consider electromagnetic waves propagating through a
homogeneous isotropic nonmagnetic dielectric layer. The layer is
located between two half-spaces: x < 0 and x > h in Cartesian
coordinate system Oxyz. The half-spaces are filled with isotropic
nonmagnetic media without any sources and characterized by per-
mittivities ε1 ≥ ε0 and ε3 ≥ ε0, respectively, where ε0 is the permit-
tivity of free space1. Assume that everywhere μ = μ0, where μ0 is
the permeability of free space.

The electromagnetic field depends on time harmonically [17]

Ẽ (x, y, z, t) = E+ (x, y, z) cosωt+E− (x, y, z) sinωt,

H̃ (x, y, z, t) = H+ (x, y, z) cosωt+H− (x, y, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Ex, Ey, Ez)

T , H = (Hx,Hy,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields is a function of three spatial variables.

1Generally, conditions ε1 ≥ ε0 and ε3 ≥ ε0 are not necessary. They are not
used for derivation of DEs, but they are useful for DEs’ solvability analysis.
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential field components on the
media interfaces x = 0, x = h and the radiation condition at infinity:
the electromagnetic field exponentially decays as |x| → ∞ in the
domains x < 0 and x > h.

The permittivity inside the layer is described by the diagonal
tensor

ε̃ =

⎛⎝ εxx 0 0
0 εyy 0
0 0 εzz

⎞⎠ ,

where εxx, εzz are constants. In the case of TM waves it does not
matter what a form εyy has. As for TM waves the value εyy is not
contained in the equations below.

The solution to the Maxwell equations are sought in the entire
space.

The geometry of the problem is shown in Fig. 1.

0

h

z

x

ε = ε3

ε = ε̃

ε = ε1

Fig. 1.

§2. TM Waves

Let us consider TM waves

E = (Ex, 0, Ez)
T , H = (0,Hy, 0)

T ,

where Ex = Ex(x, y, z), Ez = Ez(x, y, z), and Hy = Hy(x, y, z).
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Substituting the fields into Maxwell equations (1) we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Ez
∂y = 0,
∂Ex
∂z − ∂Ez

∂x = iωμHy,
∂Ex
∂y = 0,
∂Hy

∂z = iωεxxEx,
∂Hy

∂x = −iωεzzEz.

It is obvious from the first and the third equations of this system
that Ez and Ex do not depend on y. This implies that Hy does not
depend on y.

Waves propagating along medium interface z depend on z har-
monically. This means that the fields components have the form

Ex = Ex(x)e
iγz , Ez = Ez(x)e

iγz ,Hy = Hy(x)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).

So we obtain from the latter system{
γ (iEx(x))

′ − E′′
z (x) = ω2μεzzEz(x),

γ2 (iEx(x))− γE′
z(x) = ω2μεxx (iEx(x)) ,

(2)

where ( · )′ ≡ d
dx .

Let us denote by k20 := ω2με0, and perform the normalization
according to the formulas x̃ = k0x, d

dx = k0
d
dx̃ , γ̃ = γ

k0
, ε̃1 = ε1

ε0
,

ε̃3 =
ε3
ε0

, ε̃xx = εxx
ε0

, ε̃zz = εzz
ε0

. Denoting by Z(x̃) := Ez, X(x̃) := iEx

and omitting the tilde symbol from system (2) we have{
−d2Z

dx2 + γ dX
dx = εzzZ,

−dZ
dx + γX = 1

γ εxxX.

From this system we obtain{
X ′′ − λX = 0,

Z = 1
γ
εxx
εzz

X ′,
(3)
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where
λ =

εzz
εxx

(γ2 − εxx). (4)

It is necessary to find eigenvalues γ of the problem that corre-
spond to surface waves propagating along boundaries of the layer
0 < x < h, i.e., the eigenvalues corresponding to the eigenmodes of
the structure. We seek the real values of the spectral parameter γ
such that real solutions X(x) and Z(x) to system (3) exist.

Note. We consider that γ is a real value, but in the linear case
it is possible to consider that the spectral parameter γ is a complex
value. In nonlinear cases under our approach it is impossible to use
complex value of γ (see the footnote on p. 33).

Also we assume that functions X and Z are sufficiently smooth

X(x) ∈C (−∞, 0] ∩ C[0, h] ∩ C [h, +∞)∩
∩C1 (−∞, 0] ∩ C1[0, h] ∩ C1 [h, +∞) ,

Z(x) ∈C(−∞,+∞) ∩ C1 (−∞, 0] ∩ C1[0, h] ∩ C1 [h, +∞)∩
∩C2(−∞, 0) ∩ C2(0, h) ∩ C2(h,+∞).

Physical nature of the problem implies these conditions.
System (3) is the system for the anisotropic layer. Systems for

the half-spaces can be easily obtained from system (3). For this
purpose in system (3) it is necessary to put εxx = εzz = ε, where ε
is the permittivity of the isotropic half-space.

We consider that γ satisfies the inequality γ2 > max(ε1, ε3).
This condition occurs in the case if at least one of the values ε1 or
ε3 is positive. If both values ε1 and ε3 are negative, then γ2 > 0.

§3. Differential Equations of the Problem

In the domain x < 0 we have ε = ε1. From system (3) we obtain
X ′′ =

(
γ2 − ε1

)
X. Its general solution is

X (x) = A1e
−
√

γ2−ε1x +Ae
√

γ2−ε1x.
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In accordance with the radiation condition we obtain

X (x) = Aex
√

γ2−ε1 ,

Z (x) =

√
γ2−ε1
γ Aex

√
γ2−ε1 .

(5)

We assume that γ2 − ε1 > 0 otherwise it will be impossible to
satisfy the radiation condition.

In the domain x > h we have ε = ε3. From system (3) we obtain
X ′′ =

(
γ2 − ε3

)
X. Its general solution is

X (x) = B1e
(x−h)

√
γ2−ε3 +Be−(x−h)

√
γ2−ε3 .

In accordance with the radiation condition we obtain

X(x) = Be−(x−h)
√

γ2−ε3 ,

Z(x) = −
√

γ2−ε3
γ Be−(x−h)

√
γ2−ε3 .

(6)

Here for the same reason as above we consider that γ2−ε3 > 0.
Constants A and B in (5) and (6) are defined by transmission

conditions and initial conditions.
Inside the layer 0 < x < h it is necessary to solve system (3).

It is possible here to consider two cases:
a) λ ≥ 0; and general solution of system (3) inside the layer is

X(x) = C1e
−x

√
λ + C2e

x
√
λ,

Z(x) = 1
γ

√
εxx
εzz

(γ2 − εxx)
(
−C1e

−x
√
λ + C2e

x
√
λ
)
;

(7)

b) λ ≤ 0; and general solution of system (3) inside the layer is

X(x) = C1 sinx
√−λ+ C2 cosx

√−λ,

Z(x) = 1
γ

√
εxx
εzz

(εxx − γ2)
(
C1 cos x

√−λ− C2 sinx
√−λ

)
.

(8)
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§4. Transmission Conditions

Tangential components of an electromagnetic field are known
to be continuous at media interfaces. In this case the tangential
components are Hy and Ez. Hence we obtain

Hy (h+ 0) = Hy (h− 0) , Hy (0− 0) = Hy (0 + 0) ,
Ez (h+ 0) = Ez (h− 0) , Ez (0− 0) = Ez (0 + 0) .

It is also known that εEx is continuous at media interfaces,
where Ex is a normal component of the electric field. This implies
that εX is continuous at the media interfaces.

The continuity conditions for the tangential components of elec-
tromagnetic field, continuity condition for εX, and formulas (2), (3)
imply the transmission conditions for functions X and Z

[εX]x=0 = 0, [εX ]x=h = 0, [Z]x=0 = 0, [Z]x=h = 0, (9)

where [f ]x=x0 = lim
x→x0−0

f(x) − lim
x→x0+0

f(x) denotes a jump of the

function f at the interface.
Denote by X0 := X(0 − 0), Xh := X(h + 0), Z0 := Z(0 − 0),

and Zh := Z(h+ 0). Then, we obtain

A =
γ√

γ2 − ε1
Z0, B = − γ√

γ2 − ε3
Zh

and also

X0 =
γ√

γ2 − ε1
Z0, Xh = − γ√

γ2 − ε3
Zh.

The constant Zh is supposed to be known (initial condition).
In case (а) from transmission conditions (9) and solutions (5)–

(7) we obtain the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε1A = εxx (C1 + C2) ,

ε3B = εxx

(
C1e

−h
√
λ + C2e

h
√
λ
)
,√

γ2 − ε1A =
√

εxx
εzz

(γ2 − εxx)(C2 − C1),

−
√
γ2 − ε3B =

√
εxx
εzz

(γ2 − εxx)
(
−C1e

−h
√
λ + C2e

h
√
λ
)
.
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Solving this system we obtain the DE

e2h
√
λ =

ε1
√

γ2 − εxx −
√

εxxεzz(γ2 − ε1)

ε1
√

γ2 − εxx +
√

εxxεzz(γ2 − ε1)
×

× ε3
√

γ2 − εxx −
√

εxxεzz(γ2 − ε3)

ε3
√

γ2 − εxx +
√

εxxεzz(γ2 − ε3)
, (10)

where γ2 − ε1 > 0, γ2 − ε3 > 0, and λ ≥ 0.
In case (b) from transmission conditions (9) and solutions (5),

(6), (8) we obtain the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε1A = εxxC2,

ε3B = εxx
(
C1 sinh

√−λ+ C2 cosh
√−λ

)
,√

γ2 − ε1A =
√

εxx
εzz

(εxx − γ2)C1,

−
√

γ2 − ε3B =
√

εxx
εzz

(εxx − γ2)
(
C1 cos h

√−λ− C2 sinh
√−λ

)
.

From this system we find

ε1ε3
(
εxx − γ2

)− εxxεzz
√

γ2 − ε1
√

γ2 − ε3√
εxxεzz(εxx − γ2)

(
ε3
√

γ2 − ε1 + ε1
√

γ2 − ε3

) sinh
√−λ =

= cosh
√−λ, (11)

where γ2 − ε1 > 0, γ2 − ε3 > 0, and λ ≤ 0.
If cos h

√−λ 
= 0, then we obtain the well-known equation

tg h
√−λ =

√
εxxεzz(εxx − γ2)

(
ε3
√

γ2 − ε1 + ε1
√

γ2 − ε3

)
ε1ε3 (εxx − γ2)− εxxεzz

√
γ2 − ε1

√
γ2 − ε3

. (12)

If the condition cos h
√−λ 
= 0 does not hold, then we can find

the simpler (algebraic) equation for γ.
Equation (10) can be formally derived from (11). Indeed, if we

simply change in (11) −λ by λ, take into account occurred imaginary
unit, then we obtain (10). In the same way it is possible to derive
(11) from (10).
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§5. Analysis of Dispersion Equations

In both DE (10) and (12) from the conditions γ2 − ε1 > 0 and
γ2 − ε3 > 0 follow that ε1 and ε3 can have arbitrary signs (this is
mentioned in §1).

Let us consider the routine case when ε1 ≥ ε0 and ε3 ≥ ε0,
where ε0 is the permittivity of free space.

The conditions γ2 − ε1 > 0 and γ2 − ε3 > 0 imply that

γ2 > max(ε1, ε3).

The condition λ > 0 implies the following inequalities⎧⎪⎨⎪⎩
εxx > 0,

εzz > 0,

γ2 > εxx,

or

⎧⎪⎨⎪⎩
εxx < 0,

εzz < 0,

γ2 > εxx,

or

⎧⎪⎨⎪⎩
εxx > 0,

εzz < 0,

γ2 < εxx.

(13)

The condition λ < 0 implies the following inequalities⎧⎪⎨⎪⎩
εxx > 0,

εzz < 0,

γ2 > εxx,

or

⎧⎪⎨⎪⎩
εxx < 0,

εzz > 0,

γ2 > εxx,

or

⎧⎪⎨⎪⎩
εxx > 0,

εzz > 0,

γ2 < εxx.

(14)

It should be noticed that the first or the second group of ine-
qualities in (14) implies that γ2 > max(εxx, ε1, ε3). This means that
the value γ2 is not a bounded quantity. It can be proved that in
equation (12) lim

γ2→+∞
h = 0 (Fig. 2).

Also the first or the second group of inequalities in (13) implies
that γ2 > max(εxx, ε1, ε3). This means that the value γ2 is not a
bounded quantity. It is necessary to keep in mind that in the case
of equation (10) only one dispersion curve exists, as exponential
function has an imaginary period. This is the difference between
the TM waves case and analogous case for TE waves. It is proved in
Ch. 2 that for TE waves either 0 < γ2 < ε2 or max(ε1, ε3) < γ2 < ε2
is fulfilled.
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Fig. 2. ε1 = 1, εxx = 3, εzz = −1, ε3 = 2.
The dashed line corresponds to γ2 = εxx

Let εxx = εzz = ε2 and analyze equations (10), (12).
From equation (10) we obtain

h =

ln

(
ε1
√

γ2−ε2−ε2
√

γ2−ε1

ε1
√

γ2−ε2+ε2
√

γ2−ε1
· ε3

√
γ2−ε2−ε2

√
γ2−ε3

ε3
√

γ2−ε2+ε2
√

γ2−ε3

)
2
√

γ2 − ε2
+

+
iπk√
γ2 − ε2

, (15)

where k ∈ Z and γ2 − ε1 > 0, γ2 − ε2 > 0, γ2 − ε3 > 0.
Inequalities (13) take the form{

ε2 > 0,

γ2 > ε2,
or

{
ε2 < 0,

γ2 > ε2.
(16)

Inequalities (16) imply that in (15) k = 0.
It is easy to see from equation (15) that if ε1 < 0, ε2 < 0,

and ε3 < 0, then modulus of the value under the logarithm sign is
less than 1. This means that the value h has negative or imaginary
value. It is also true under conditions ε1 > 0, ε2 > 0, and ε3 > 0. In
other cases the value h can have either negative or positive value.
The value h is the thickness of the layer and hence h > 0.

We are interested in the case when ε1 ≥ ε0, ε3 ≥ ε0, where
ε0 is the permittivity of free space and ε2 < 0. This implies that
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γ2 > max(ε1, ε3). Let us consider equation (10) under these condi-

tions. Immediately notice that in this case
∣∣∣∣ε1√γ2−ε2−ε2

√
γ2−ε1

ε1
√

γ2−ε2+ε2
√

γ2−ε1

∣∣∣∣ > 1

and
∣∣∣∣ε3√γ2−ε2−ε2

√
γ2−ε3

ε3
√

γ2−ε2+ε2
√

γ2−ε3

∣∣∣∣ > 1. This means that modulus of the value

under the logarithm sign in (15) is more than 1. And now it is
necessary to find the conditions when the value under logarithm
sign is positive. Formula (15) can be rewritten in the following form

h =

ln

((
ε1
√

γ2−ε2−ε2
√

γ2−ε1
)2

ε21(γ
2−ε2)−ε22(γ

2−ε1)
·
(
ε3
√

γ2−ε2−ε2
√

γ2−ε3
)2

ε23(γ
2−ε2)−ε22(γ

2−ε3)

)
2
√

γ2 − ε2
. (17)

It is obvious from formula (17) that the denominators must have
the same signs. Rewrite formula (17) in the form

h =
ln

(
ε1
√

γ2−ε2−ε2
√

γ2−ε1
)2(

ε3
√

γ2−ε2−ε2
√

γ2−ε3
)2

(ε1−ε2)(ε3−ε2)(γ2(ε1+ε2)−ε1ε2)(γ2(ε3+ε2)−ε3ε2)

2
√

γ2 − ε2
. (18)

It is obvious that ε1−ε2 > 0 and ε3−ε2 > 0. This means that we
only have to study

(
γ2 (ε1 + ε2)− ε1ε2

)
and

(
γ2 (ε3 + ε2)− ε3ε2

)
.

These multipliers must be either simultaneously negative or positive.
If both multipliers are negative, then it is easy to show that
γ2 > max

(
ε1, ε3,

ε1|ε2|
|ε2|−ε1

, ε3|ε2|
|ε2|−ε3

)
. Since |ε2|

|ε2|−ε1
> 1 and |ε2|

|ε2|−ε3
> 1;

therefore, we obtain finally

γ2 > γ2∗ = |ε2| ·max

(
ε1

|ε2| − ε1
,

ε3
|ε2| − ε3

)
.

It can be proved that in this case lim
γ2→∞

h = 0. Also it is easy to

see that lim
γ2→γ2∗+0

h = +∞ (Fig. 3).
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Fig. 3. ε1 = 3, ε2 = −5, ε3 = 2

If both multipliers are positive, then there are 4 cases:
a) |ε2| < min(ε1, ε3) and γ2 > max(ε1, ε3). In this case we

obtain lim
γ2→∞

h = 0 (since the value under logarithm sign in (15) is

more than 1 and bounded; and the multiplier before logarithm sign
tends to 0);

b) ε3 < |ε2| < ε1 and max (ε1, ε3) = ε1 < γ2 < ε3|ε2|
|ε2|−ε3

. Then we

obtain ε1 < ε3|ε2|
|ε2|−ε3

. Under γ2 > ε3|ε2|
|ε2|−ε3

we obtain imaginary value
for h. It is obvious from formula (18) that lim

γ2→ ε3|ε2|
|ε2|−ε3

−0

h = +∞, i.e.,

there is the asymptote γ2 = ε3|ε2|
|ε2|−ε3

. The value h under γ2 → ε1 + 0

has finite value (Fig. 4,b)1;
c) ε1 < |ε2| < ε3 and max (ε1, ε3) = ε3 < γ2 < ε1|ε2|

|ε2|−ε1
. Then we

obtain ε3 < ε1|ε2|
|ε2|−ε1

. Under γ2 > ε1|ε2|
|ε2|−ε1

the value h has imaginary
value;

d) |ε2| > max(ε1, ε3), max (ε1, ε3) < γ2 < min
(

ε1|ε2|
|ε2|−ε1

, ε3|ε2|
|ε2|−ε3

)
.

It should be noticed that the two-sided inequality in the case
d for certain values of the parameters can be contradictory. For
example, under ε2 = −5, ε1 = ε3 = 1 we obtain 2 < γ2 < 5/4.

Each of the cases is shown in corresponding Fig. 4,a–d.

1The conclusion about the asymptote existence is true for the cases c, d.
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Fig. 4,a. ε1 = 3, ε2 = −1, ε3 = 2; γ2
∗ = 3, h∗ = h
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Fig. 4,c. ε1 = 2.95, ε2 = −3, ε3 = 4; γ2
∗ = 4, h∗ = h
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Fig. 4,d. ε1 = 3.9, ε2 = −4.1, ε3 = 4; γ2
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As it is clear from the computation above cases b–d do not
appreciably distinguish. This fact is shown in Fig. 4,b–d. The curves
in these cases are very similar to each other. And it is possible to
make them practically identical if the parameters ε1, ε2, and ε3 are
specially chosen.

In regard to determination of eigenvalues using figures see p. 29.
Now let us go over to equation (12). This is classical equation

and under εxx = εzz = ε2, ε1 = ε3 is cited in [64]. Under conditions
εxx = εzz = ε2 equation (12) takes the form

tg h
√

ε2 − γ2 =
ε2
√

ε2 − γ2
(
ε3
√

γ2 − ε1 + ε1
√

γ2 − ε3

)
ε1ε3 (ε2 − γ2)− ε22

√
γ2 − ε1

√
γ2 − ε3

. (19)

Inequalities (14) take the form{
ε2 > 0,

γ2 < ε2.
(20)

Equation (19) and inequalities (20) imply that

max(ε1, ε3) < γ2 < ε2. (21)

Introduce the notation ε∗ := max(ε1, ε3), ε∗ := min(ε1, ε3) and
hence h∗ := lim

γ2→ε∗
h(γ) = 1√

ε2−ε∗ arctg
ε2

√
ε∗−ε∗

ε∗
√
ε2−ε∗ . It is obvious that

0 < h∗ < +∞. The less is the value ε2− ε∗ the more is the value h∗.
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Conclusion. There are only finite number of waves propagating
through a layer with constant permittivity (this number is equal to
a number of eigenvalues). The more is the value h the more waves
propagate in this layer. If ε∗ 
= ε∗ (in other words, if ε1 
= ε3), then
there is h∗ > 0 such that there are no waves in the layer with h < h∗.
This conclusion holds only for a linear waveguide structure (all these
hold for equation (19)).

This conclusion holds only for a linear waveguide structure. In
the case of a nonlinear layer it is possible that for any value h infinite
number of propagating waves exist, i.e., there are infinite number of
eigenvalues.

In the case of equation (19) the behavior of the DCs is the same
as it is shown in Fig. 1, 2 in Ch. 2 (p. 29, 29).



C H A P T E R 6

TM WAVE PROPAGATION
IN A LAYER WITH ARBITRARY NONLINEARITY

§1. Statement of the Problem

Let us consider electromagnetic waves propagating through a
homogeneous isotropic nonmagnetic dielectric layer. The layer is
located between two half-spaces: x < 0 and x > h in Cartesian
coordinate system Oxyz. The half-spaces are filled with isotropic
nonmagnetic media without any sources and characterized by per-
mittivities ε1 ≥ ε0 and ε3 ≥ ε0, respectively, where ε0 is the permit-
tivity of free space1. Assume that everywhere μ = μ0, where μ0 is
the permeability of free space.

The electromagnetic field depends on time harmonically [17]

Ẽ (x, y, z, t) = E+ (x, y, z) cosωt+E− (x, y, z) sinωt,

H̃ (x, y, z, t) = H+ (x, y, z) cosωt+H− (x, y, z) sinωt,

where ω is the circular frequency; E, E+, E−, H, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Ex, Ey, Ez)

T , H = (Hx,Hy,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields is a function of three spatial variables.

1Generally, conditions ε1 ≥ ε0 and ε3 ≥ ε0 are not necessary. They are not
used for derivation of DEs, but they are useful for DEs’ solvability analysis.
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωε̃E;

rotE = iωμH,
(1)

the continuity condition for the tangential field components on the
media interfaces x = 0, x = h and the radiation condition at infinity:
the electromagnetic field exponentially decays as |x| → ∞ in the
domains x < 0 and x > h.

The permittivity inside the layer is described by the diagonal
tensor

ε̃ =

⎛⎝ εxx 0 0
0 εyy 0
0 0 εzz

⎞⎠ ,

where

εxx = εf + ε0f
(
|Ex|2 , |Ez|2

)
, εzz = εg + ε0g

(
|Ex|2 , |Ez|2

)
.

In the case of TM waves it does not matter what a form εyy has.
As for TM waves the value εyy are not contained in the equations
below.

It is assumed that εf > max(ε1, ε3), εg > max(ε1, ε3) are con-
stants parts of the permittivity ε̃. The functions f , g are analytical
ones1 and such that the relation ∂f

∂(|Ez|2) = ∂g

∂(|Ex|2) is satisfied (this

relation yields the total differential equation).
The relation ∂f

∂(|Ez|2) = ∂g

∂(|Ex|2) for components of tensor ε̃ has

been pointed out in [23]. Authors in [23] stated that many types of
nonlinearities satisfy this relation. Using an integrating multiplier
this relation can be generalized (this is also mentioned in [23]).

Also till §6 we assume that εxx > 0.
The solutions to the Maxwell equations are sought in the entire

space.
The geometry of the problem is shown in Fig. 1.

1Everywhere below when we consider an analytical function we mean that it
is an analytical function of a real variable.
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§2. TM Waves

Let us consider TM waves

E = (Ex, 0, Ez)
T , H = (0,Hy, 0)

T ,

where Ex = Ex(x, y, z), Ez = Ez(x, y, z), and Hy = Hy(x, y, z).
Substituting the fields into Maxwell equations (1) we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Ez
∂y = 0,
∂Ex
∂z − ∂Ez

∂x = iωμHy,
∂Ex
∂y = 0,
∂Hy

∂z = iωεxxEx,
∂Hy

∂x = −iωεzzEz.

It is obvious from the first and the third equations of this system
that Ez and Ex do not depend on y. This implies that Hy does not
depend on y.

Waves propagating along medium interface z depend on z har-
monically. This means that the fields components have the form

Ex = Ex(x)e
iγz , Ez = Ez(x)e

iγz ,Hy = Hy(x)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).
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So we obtain from the latter system⎧⎪⎨⎪⎩
iγEx − E′

z = iωμHy,

iγHy = iωεxxEx,

H ′
y = −iωεzzEz.

(2)

The following system can be easily derived from the previous
system [17]{

γ (iEx(x))
′ − E′′

z (x) = ω2μεzzEz(x),

γ2 (iEx(x))− γE′
z(x) = ω2μεxx (iEx(x)) ,

(3)

where ( · )′ ≡ d
dx .

Let us denote by k20 := ω2μ0ε0 and perform the normalization
according to the formulas x̃ = k0x, d

dx = k0
d
dx̃ , γ̃ = γ

k0
, ε̃i = εi

ε0

(i = 1, 2), ε̃f =
εf
ε0

, ε̃g =
εg
ε0

. Denoting by Z(x̃) := Ez, X(x̃) := iEx

and omitting the tilde symbol, we obtain from system (3){
−d2Z

dx2 + γ dX
dx = εzzZ,

−dZ
dx + γX = 1

γ εxxX.
(4)

It is necessary to find eigenvalues γ of the problem that corre-
spond to surface waves propagating along boundaries of the layer
0 < x < h, i.e., the eigenvalues corresponding to the eigenmodes
of the structure. We seek the real values of spectral parameter γ
such that real solutions X(x) and Z(x) to system (4) exist (see
the footnote on p. 33 and the note on p. 74). Also we assume that
max(ε1, ε3) < γ2 < εf . This two-sided inequality naturally appears
for an analogous problem in a layer with constant permittivity tensor
(for details see Ch. 5, formula (14)).

Also we assume that functions X and Z are sufficiently smooth

X(x) ∈C (−∞, 0] ∩ C[0, h] ∩ C [h, +∞)∩
∩C1 (−∞, 0] ∩ C1[0, h] ∩ C1 [h, +∞) ;

Z(x) ∈C(−∞,+∞) ∩ C1 (−∞, 0] ∩ C1[0, h] ∩ C1 [h, +∞)∩
∩C2(−∞, 0) ∩ C2(0, h) ∩ C2(h,+∞).
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Physical nature of the problem implies these conditions.
It is clear that system (4) is an autonomous one. System (4)

can be rewritten in a normal form (it will be done below). This
system in the normal form can be considered as a dynamical system
with analytical with respect to X and Z right-hand sides1. It is well
known (see, for example [5]) that the solution X and Z of such a
system are analytical functions with respect to independent variable
as well. For this very reason we require that functions f and g are
analytical. This is an important fact for DEs’ derivation.

System (4) is the system for the anisotropic layer. Systems for
the half-spaces can be easily obtained from system (4). For this
purpose in system (4) it is necessary to put εxx = εzz = ε, where ε
is the permittivity of the isotropic half-space.

We consider that γ satisfies the inequality γ2 > max(ε1, ε3).
This condition occurs in the case if at least one of the values ε1 or
ε3 is positive. If both values ε1 and ε3 are negative, then γ2 > 0.

§3. Differential Equations of the Problem

In the half-spaces x < 0 and x > h the permittivity ε̃ is a
constant: ε1 for x < 0 and ε3 for x > h. Taking it into account
for system (4). In both cases we obtain systems of linear differential
equations.

In the domain x < 0 we have ε = ε1. From system (4) we obtain
the following system X ′ = γZ, Z ′ = γ2−ε1

γ X. From this system
we obtain the equation X ′′ = (γ2 − ε1)X. Its general solution is
X(x) = A1e

−x
√

γ2−ε1+Aex
√

γ2−ε1 . In accordance with the radiation
condition we obtain the solution of the system

X (x) = A exp
(
x
√

γ2 − ε1

)
,

Z (x) = γ−1
√

γ2 − ε1A exp
(
x
√

γ2 − ε1

)
.

(5)

1Of course in the domain where these right-hand sides are analytical with
respect to X and Z.
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We assume that γ2 − ε1 > 0 otherwise it will be impossible to
satisfy the radiation condition.

In the domain x > h we have ε = ε3. From system (4) we obtain
the following system X ′ = γZ, Z ′ = γ2−ε3

γ X. From this system
we obtain the equation X ′′ = (γ2 − ε3)X. Its general solution is
X(x) = Be−(x−h)

√
γ2−ε3 +B1e

(x−h)
√

γ2−ε3 . In accordance with the
radiation condition we obtain the solution of the system

X (x) = B exp
(
− (x− h)

√
γ2 − ε3

)
,

Z (x) = −γ−1
√

γ2 − ε3B exp
(
− (x− h)

√
γ2 − ε3

)
.

(6)

Here for the same reason as above we consider that γ2−ε3 > 0.
Constants A and B in (5) and (6) are defined by transmission

conditions and initial conditions.
Inside the layer 0 < x < h system (4) takes the form{

−d2Z
dx2 + γ dX

dx = (εg + g)Z,

−dZ
dx + γX = 1

γ (εf + f)X,
(7)

further the arguments of the functions f and g will be often omitted
(if there is no misunderstanding).

Differentiating the second equation of this system with respect
to x, we obtain

−Z ′′ + γX ′ = γ−1
(
2XX ′f ′

u + 2ZZ ′f ′
v

)
X + γ−1 (εf + f)X ′,

where f ′
u := f ′

X2 , f ′
v := f ′

Z2 (further these derivatives are understood
in this sense, while other sense will not be pointed out).

Using the latter equation system (7) can be rewritten in the
form1 ⎧⎨⎩dX

dx =
γ2(εg+g)+2(εf−γ2+f)X2f ′

v

γ(2X2f ′
u+εf+f)

Z,

dZ
dx = 1

γ

(
γ2 − εf − f

)
X.

(8)

1Now system (7) is written in a normal form. About analyticity of the solu-
tions of this very system is said in the end of §2.
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Dividing the first equation in system (8) to the second one we
obtain the ordinary differential equation

γ
(
2X2f ′

u + εf + f
) dX
dZ

=

=
γ2 (εg + g)Z + 2

(
εf − γ2 + f

)
X2Zf ′

v
1
γ (γ

2 − εf − f)X
. (9)

Equation (9) can be transformed into a total differential equa-
tion. Indeed, rewrite it into a symmetric form

MdX +NdZ = 0,

where

M =
(
γ2 − εf − f

) (
2X2f ′

u + εf + f
)
X,

N =
(
2
(
γ2 − εf − f

)
X2f ′

v − γ2 (εg + g)
)
Z.

It is easy to check that the relation ∂M
∂Z = ∂N

∂X is satisfied. This
means that equation (9) can be rewritten as a total differential equa-
tion (the equation MdX + NdZ = 0 is the total differential equa-
tion). Let us find its solution U(X,Z) (it is the first integral of
system (9)). Since ∂U

∂x = M ; therefore,

U =

∫ (
γ2 − εf − f

) (
2X2f ′

u + εf + f
)
XdX + ϕ (Z) =

=

∫
X2
(
γ2 − εf − f

)
f ′
u2XdX+

+

∫ (
γ2 − εf − f

)
(εf + f)XdX + ϕ (Z) .

Using partial integration for the first term we obtain

U = −1

2
X2
(
γ2 − εf − f

)2
+

∫
X
(
γ2 − εf − f

)2
dX+

+

∫ (
γ2 − εf − f

)
(εf + f)XdX + ϕ (Z) =
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= −1

2
X2
(
γ2 − εf − f

)2
+

∫
X
(
γ2 − εf − f

)2
dX+

+

∫ (
γ2 − εf − f

) (−γ2 + εf + f + γ2
)
XdX + ϕ (Z) =

= −1

2
X2
(
γ2 − εf − f

)2
+ γ2

∫ (
γ2 − εf − f

)
XdX + ϕ (Z) .

Taking into account that ∂U
∂Z = N we obtain

∂U

∂Z
= 2X2Z

(
γ2 − εf − f

)
f ′
v − 2γ2

∫
XZf ′

vdX + ϕ′ (Z) =

=
(
2
(
γ2 − εf − f

)
X2f ′

v − γ2 (εg + g)
)
Z.

It follows from the above that

ϕ′ (Z) = 2γ2
∫

XZf ′
vdX − γ2 (εg + g)Z.

Integrating with respect to Z we obtain

ϕ(Z) = 2γ2
∫ ∫

XZf ′
vdXdZ − γ2

∫
(εg + g)ZdZ.

Changing the order of integration in the double integral (Fubini
theorem) we obtain

ϕ (Z) = γ2
∫

X

(∫
2Zf ′

vdZ

)
dX − γ2

∫
(εg + g)ZdZ =

= γ2
∫

XfdX − γ2
∫

(εg + g)ZdZ.

We obtain U in the following form

U = −1

2
X2
(
γ2 − εf − f

)2
+ γ2

∫ (
γ2 − εf − f

)
XdX+

+ γ2
∫

XfdX − γ2
∫

(εg + g)ZdZ.
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From the above formula we obtain

U = −1

2
X2
(
γ2 − εf − f

)2
+

+
γ2

2

((
γ2 − εf

)
X2 − εgZ

2
)− γ2

∫
ZgdZ.

Finally we obtain

U = X2
(
εf − γ2 + f

)2
+

+ γ2
((
εf − γ2

)
X2 + εgZ

2
)
+ γ2

∫
g
(
X2, s

)
ds

∣∣∣∣
s=Z2

≡ C.

The function U (X,Z) is the first integral of system (8). We are
going to use the first integral in the following form

X2
(
εf − γ2 + f

)2
+ γ2

((
εf − γ2

)
X2 + εgZ

2
)
+ γ2G ≡ C, (10)

where G = G
(
X2, Z2

) ≡ ∫ g (X2, s
)
ds
∣∣
s=Z2 and C is a constant of

integration.

§4. Transmission Conditions

and the Transmission Problem

Tangential components of an electromagnetic field are known
to be continuous at media interfaces. In this case the tangential
components are Hy and Ez. Hence we obtain

Hy (h+ 0) = Hy (h− 0) , Hy (0− 0) = Hy (0 + 0) ,
Ez (h+ 0) = Ez (h− 0) , Ez (0− 0) = Ez (0 + 0) .

From the continuity conditions for the tangential components
of the fields we obtain

γX(h) − Z ′(h) = H
(h)
y , γX(0) − Z ′(0) = H

(0)
y ,

Z(h) = Ez(h+ 0) = E
(h)
z , Z(0) = Ez(0− 0) = E

(0)
z ,

(11)

where H
(h)
y := i

√
μ√
ε0
Hy(h+ 0), H(0)

y := i
√
μ√
ε0
Hy(0− 0).
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The constant E
(h)
z = Z(h) = Z(h+0) is supposed to be known

(initial condition). Let us denote by X0 := X(0), Xh := X(h),
Z0 := Z(0), and Zh := Z(h). So we obtain that A = γ√

γ2−ε1
Z0,

B = γ√
γ2−ε3

Zh.

Then from conditions (11) we obtain

H(h)
y = −Zh

ε3√
γ2 − ε3

; H(0)
y = Z0

ε1√
γ2 − ε1

. (12)

In accordance with (7) inside the layer

−Z ′ (x) + γX (x) = γ−1 (εf + f)X (x) . (13)

Then for x = h we obtain from (13)

−Zh
γε3√
γ2 − ε3

=
(
εf + f

(
X2

h, Z
2
h

))
Xh. (14)

If Zh > 0 (we assume it), then, as it is easy to see from (14),
Xh < 0 (we used the fact that εxx > 0).

Denote by fh := f
(
X2

h, Z
2
h

)
and Gh := G

(
X2

h, Z
2
h

)
. Then, using

first integral (10), substituting x = h, we find the value Ch := C|x=h:

Ch = X2
h

(
εf − γ2 + fh

)2
+ γ2

((
εf − γ2

)
X2

h + εgZ
2
h

)
+Gh. (15)

It should be noticed that Ch > 0 if Zh > 0 and functions f , g
satisfy conditions above mentioned.

In order to find the values X0 and Z0 it is necessary to solve
the following system:⎧⎨⎩

γε1√
γ2−ε1

Z0 = (εf + f0)X0;(
εf − γ2 + f0

)2
X2

0 + γ2
((
εf − γ2

)
X2

0 + εgZ
2
0

)
+G0 = Ch,

(16)
where f0 = f

(
X2

0 , Z
2
0

)
and G0 = G

(
X2

0 , Z
2
0

)
.

System (16) is obtained by using formula (13) at x = 0 and first
integral (10) at x = 0.
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It is easy to see from the second equation of system (16) that
the values X0 and Z0 can have arbitrary signs. At the same time
from the first equation of system (16) we can see that X0 and Z0

have to be positive or negative simultaneously (here the condition
εxx > 0 is used).

Normal components of electromagnetic field are known to be
discontinuous at media interfaces. And it is the discontinuity of the
first kind. In this case the normal component is Ex. It is also known
that the value εEx is continuous at media interfaces. It follows from
the above and from the continuity of the tangential component Ez

that the transmission conditions for functions εX and Z are

[εX ]x=0 = 0, [εX]x=h = 0, [Z]x=0 = 0, [Z]x=h = 0, (17)

where [f ]x=x0 = lim
x→x0−0

f(x) − lim
x→x0+0

f(x) denotes a jump of the

function f at the interface.
We also suppose that functions X(x) and Z(x) satisfy the con-

dition

X (x) = O

(
1

|x|
)

and Z (x) = O

(
1

|x|
)

as |x| → ∞. (18)

Let

D =

(
d
dx 0

0 d
dx

)
,F(X,Z) =

(
X
Z

)
,G(F, γ) =

(
G1

G2

)
,

where X ≡ X(x), Z ≡ Z(x) are unknown functions; G1 ≡ G1(F, γ),
G2 ≡ G2(F, γ) are right-hand sides of system (8). The value γ is a
spectral parameter. Rewrite the problem using new notation.

For the half-space x < 0 and ε = ε1 we obtain

DF−
(

0 γ
γ2−ε1

γ 0

)
F = 0. (19)

Inside the layer 0 < x < h we have εxx = εf + f
(
X2, Z2

)
,

εzz = εg + g
(
X2, Z2

)
and we obtain

L(F, γ) ≡ DF−G(F, γ) = 0. (20)
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For the half-space x > h and ε = ε3 we obtain

DF−
(

0 γ
γ2−ε3

γ 0

)
F = 0. (21)

Let us formulate the transmission problem (it is possible to
reformulate it as the boundary eigenvalue problem). It is necessary
to find eigenvalues γ and corresponding to them nonzero vectors F
such that F satisfies to equations (19)–(21). Components X, Z of
vector F satisfy transmission conditions (17), condition (18) and
X0, Z0 satisfy to system (16).

Definition 1. The value γ = γ0 such that nonzero solution F
to problem (19)–(21) exists under conditions (16)–(18) is called an
eigenvaue of the problem. Solution F corresponding to the eigenvalue
is called an eigenvector of the problem and components X(x) and
Z(x) of vector F are called eigenfunctions (see the remark on p. 37).

§5. Dispersion Equation

Introduce the new variables1

τ(x) = εf +X2(x), η(x) =
X (x)

Z(x)
τ(x), (22)

then

X2 = τ − εf , XZ = (τ − εf )
τ

η
, Z2 = (τ − εf )

τ2

η2
.

We also assume that here and further

f ≡ f

(
τ − εf , (τ − εf )

τ2

η2

)
, g ≡ g

(
τ − εf , (τ − εf )

τ2

η2

)
.

The form of system (8) and first integral (10) have to be found
in new variables. Logically we obtain⎧⎪⎨⎪⎩
γ
(
2X2f ′

u + εf + f
) (

X2
)′
=

= 2
(
γ2 (εg + g) + 2

(
εf − γ2 + f

)
X2f ′

v

)
XZ,(

Z2
)′

= 2
γ

(
γ2 − εf − f

)
XZ,

1See the footnote on p. 37.
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and further⎧⎪⎪⎨⎪⎪⎩
γ (2 (τ − εf ) f

′
u + εf + f) τ ′ =
= 2 τ

η (τ − εf )
(
γ2 (εg + g) + 2τ

(
εf − γ2 + f

)
f ′
v

)
,(

τ2

η2 (τ − εf )
)′

= 2
γ
τ
η (τ − εf )

(
γ2 − εf − f

)
.

From the first equation we obtain

τ ′ =
2

γ
(τ − εf )

τ

η
χ,

where χ =
γ2(εg+g)+2(τ−εf)(εf−γ2+f)f ′

v

2(τ−εf)f ′
u+εf+f

.

Let us transform the second equation of the latter system

τ

η2
(3τ − 3εf ) τ

′ − 2
τ2 (τ − εf )

η3
η′ =

2

γ

τ

η

(
γ2 − εf − f

)
(τ − εf ) .

Using τ ′ we obtain

τ

η2

(
1

γ
(3τ − 3εf )χ− η′

)
=

1

γ

(
γ2 − εf − f

)
.

And finally we obtain{
τ ′ = 2

γ
τ
η (τ − εf )χ;

η′ = 1
γ
η2

τ

(
εf − γ2 + f

)
+ (3τ − 2εf )χ,

(23)

here and further

f ′
u =

∂f (u, v)

∂u

∣∣∣∣(
τ−εf ,

τ2

η2
(τ−εf)

) , f ′
v =

∂f (u, v)

∂v

∣∣∣∣(
τ−εf ,

τ2

η2
(τ−εf)

) .

The first integral takes the form

(
εf − γ2 + f

)2
+ γ2

((
εf − γ2

)
+ εg

τ2

η2

)
+

+
G
(
τ − εf ,

τ2

η2
(τ − εf )

)
(τ − εf )

≡ C. (24)



Ch. 6. TM Waves in a Layer with Arbitrary Nonlinearity 99

Equation (24), in general, is a transcendental equation with
respect to τ , η. Its solution with respect to a certain variable (τ or
η) can be analytically expressed only in exceptional cases.

The functions f and g are assumed such that the right-hand
side of the second equation in system (23) is positive. On the face of
it, this condition seems too rigid. However it is not so. For example,
if f and g are polynomials with positive coefficients, then this con-
dition is satisfied. As it is known, polarization vector in constitutive
relations in the Maxwell equations can be expanded into a series in
|E|. When we consider that nonlinearity functions are polynomials
we simply cut off the series. It is necessary to remember that the
condition ∂f

∂(|Ez |2) = ∂g

∂(|Ex|2) constrains the forms of the polynomials

f and g.

Now it is possible to find the signs of the values η(0) and η(h).
One can see from system (16) that the values X0 and Z0 either
positive or negative simultaneously. At the same time, from formula
(14) it is clear that the values Xh and Zh have opposite signs. Taking
it into account we obtain

η (0) =
X0

Z0

(
εf +X2

0

)
> 0 and η (h) =

Xh

Zh

(
εf +X2

0

)
< 0.

(25)

It is easy to see that the right-hand side of the second equation
in system (23) is strictly positive. This means that the function
η(x) strictly increases on interval (0, h). Taking into account (25)
we obtain that the function η(x) can not be differentiable on the
entire interval (0, h). This means that the function η(x) has a break
point.

Since the solutions X and Z of system (8) are analytical func-
tions; therefore, the function η has only discontinuities of the second
kind. And the points where the function Z vanishes are these dis-
continuities. Let the function η have a discontinuity at the point
x∗ ∈ (0, h). It is obvious that in this case η (x∗ − 0) → +∞ and
η (x∗ + 0) → −∞.
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It is natural to suppose that the function η(x) on interval (0, h)
has several break points x0, x1, ..., xN . The properties of function
η(x) imply

η (xi − 0) = +∞, η (xi + 0) = −∞, где i = 0, N. (26)

Denote by

w :=

[
1

γ

η2

τ

(
εf − γ2 + f

)
+ (3τ − 2εf )χ

]−1

,

where w = w(η); τ = τ(η) is expressed from first integral (24); and
χ is defined in the beginning of this section.

Taking into account our hypothesis we will seek to the solutions
on each interval [0 , x0), (x0, x1), ..., (xN , h]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
η(x0)∫
η(x)

wdη = x+ c0, 0 ≤ x ≤ x0;

η(x)∫
η(xi)

wdη = x+ ci, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN )

wdη = x+ cN , xN ≤ x ≤ h.

(27)

Substituting x = 0, x = xi+1, and x = xN into equations (27)
(into the first, the second, and the third, respectively) and taking
into account (26), we find constants c1, c2, ..., cN+1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −
+∞∫
η(0)

wdη;

ci+1 =
+∞∫
−∞

wdη − xi+1, i = 0, N − 1;

cN+1 =
η(h)∫
−∞

wdη − h.

(28)
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Using (28) we can rewrite equations (27) in the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x0)∫
η(x)

wdη = −x+
+∞∫
η(0)

wdη, 0 ≤ x ≤ x0;

η(x)∫
η(xi)

wdη = x+
+∞∫
−∞

wdη − xi+1, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN )

wdη = x+
η(h)∫
−∞

wdη − h, xN ≤ x ≤ h.

(29)

Introduce the notation T :=
+∞∫
−∞

wdη. It follows from formula

(29) that 0 < xi+1−xi = T < h, where i = 0, N − 1. This implies the
convergence of the improper integral (it will be proved in other way
below). Now consider x in equations (29) such that all the integrals
on the left side vanish (i.e. x = x0, x = xi, and x = xN ), and sum
all equations (29). We obtain

0 = −x0+

+∞∫
η(0)

wdη+x0+T−x1+...+xN−1+T−xN+xN+

η(h)∫
−∞

wdη−h.

This formula implies

+∞∫
η(0)

wdη +

η(h)∫
−∞

wdη +NT = h.

Finally we obtain the DE in the following form

−
η(0)∫

η(h)

wdη + (N + 1)T = h, (30)

where η(0), η(h) are defined by formulas (25).
Expression (30) is the DE, which holds for any finite h. Let γ be

a solution of DE (30) and an eigenvalue of the problem. Then, there
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are eigenfunctions X and Z, which correspond to the eigenvalue γ.
The eigenfunction Z has N + 1 zeros on the interval (0, h).

Notice that improper integrals in DE (30) converge. Indeed,
function τ = τ(η) is a bounded one as η → ∞ since τ = εf + X2

and X are bounded functions. Then

|w| =
∣∣∣∣ γτ

η2 (εf − γ2 + f) + γτ (3τ − 2εf )χ

∣∣∣∣ ≤ ∣∣∣∣ 1

αη2 + β

∣∣∣∣ ,
where α > 0, β > 0 are constants. It is obvious that improper

integral
+∞∫
−∞

dη
αη2+β

converges. Convergence of the improper integrals

in (30) in inner points results from the requirement that the right-
hand side of the second equation of system (23) is positive.

Theorem 1. The set of solutions of DE (30) contains the set
of solutions (eigenvalues) of the boundary eigenvalue problem (19)–
(21) with conditions (16)–(18).

Proof. It follows from the method of obtaining of DE (30) from
system (23) that an eigenvalue of problem (19)–(21) is a solution of
the DE.

It is obvious that function τ as the function with respect to η
defined from first integral (24) is a multiple-valued function. This
implies that not every solution of DE (30) is an eigenvalue of the
problem. In other words, system (16) can have several roots (X0, Z0)
such that τ(0) ≥ εf . Even in this case it is possible to find eigenvalues
among roots of the DE. Indeed, when we find a solution γ of DE
(30), we can find functions τ(x) and η(x) from system (23) and first
integral (24). From functions τ(x) and η(x) using formulas (22) we
obtain

X(x) = ±√τ − εf и Z(x) = ±√τ − εf
τ

|η| . (31)

It is an important question how to choose the signs. Let us
discuss it in detail. We know the behavior of the function η = τ Y

Z :
it monotonically increases, and if x = x∗ such that η (x∗) = 0, then
η (x∗ − 0) < 0 and η (x∗ + 0) > 0; if x = x∗∗ such that η (x∗∗) =
±∞, then η (x∗∗ − 0) > 0 and η (x∗∗ + 0) < 0. The function η has
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no other points of sign’s reversal. To fix the idea, assume that the
initial condition is Zh > 0. If η > 0, then the functions X and Z have
the same signs; if η < 0, then the functions X and Z have different
signs. Since X and Z are continuous we can choose necessary signs in
expressions (31). Now, when we find the function X we can calculate
X0. If this calculated value is equal to the value calculated from
system (16), then the solution γ of the DE is an eigenvalue of the
problem (and is not an eigenvalue otherwise).

If the functions f and g such that a unique solution (X0, Z0) of
system (16) exists, then we have the following

Theorem 2 (of equivalence). If system (16) has a unique solu-
tion (τ(0), η(0)) and τ(0) ≥ εf , then boundary eigenvalue problem
(19)–(21) with conditions (16)–(18) has a solution (an eigenvalue)
if and only if this eigenvalue is a solution of DE (30).

The proof of this theorem results from the proof of previous
theorem.

Introduce the notation J(γ, k) :=
η(h)∫
η(0)

wdη+kT , where the right-

hand side is defined by DE (30) and k = 0, N + 1.
Let

hkinf = inf
γ2∈(max(ε1,ε3),εf)

J(γ, k),

hksup = sup
γ2∈(max(ε1,ε3),εf)

J(γ, k).

Let us formulate the sufficient condition of existence at least
one eigenvalue of the problem.

Theorem 3. Let h satisfies for a certain k = 0, N + 1 the fol-
lowing two-sided inequality

hkinf < h < hksup,

then boundary eigenvalue problem (19)–(21) with conditions (16)–
(18) has at least one solution (an eigenvalue).

The quantities hkinf and hksup can be numerically calculated.
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§6. Generalized Dispersion Equation

Here we derive the generalized DE, which holds for any real
values εxx and εzz. In addition the sign of the right-hand side of
the second equation in system (23) (see the footnote on p. 43), and
conditions max(ε1, ε3) < γ2 < εf or 0 < γ2 < εf are not taken into
account. These conditions appear in the case of a linear layer and
are used for derivation of DE (30). Though in the nonlinear case it is
not necessary to limit value γ2 from the right side. At the same time
it is clear that γ is limited from the left side, since this limit appears
from the solutions in the half-spaces (where the permittivities are
constants).

Now we assume that γ satisfies one of the following inequalities

max(ε1, ε3) < γ2 < +∞,

when either ε1 or ε3 is positive, or

0 < γ2 < +∞,

when both ε1 < 0 and ε3 < 0.
At first we derive the DE from system (23) and first integral

(24), and then we discuss the details of derivation and conditions
when the derivation is possible and the DE is well defined.

Thus, let us consider system (23) and first integral (24){
τ ′ = 2

γ
τ
η (τ − εf )χ,

η′ = 1
γ
η2

τ

(
εf − γ2 + f

)
+ (3τ − 2εf )χ,

where χ =
γ2(εg+g)+2(τ−εf)(εf−γ2+f)f ′

v

2(τ−εf)f ′
u+εf+f

;

f ′
u = ∂f(u,v)

∂u

∣∣∣(
τ−εf ,

τ2

η2
(τ−εf)

), f ′
v = ∂f(u,v)

∂v

∣∣∣(
τ−εf ,

τ2

η2
(τ−εf)

);(
εf − γ2 + f

)2
+ γ2

((
εf − γ2

)
+ εg

τ2

η2

)
+

+G
(
τ − εf ,

τ2

η2
(τ − εf )

)
(τ − εf )

−1 ≡ C,

where G
(
X2, Z2

) ≡ ∫ Z2

Z0
g
(
X2, s

)
ds, C is a constant.
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Using first integral (24) it is possible to integrate formally any
of the equations of system (23). As earlier we integrate the second
equation. We can not obtain a solution on the whole interval (0, h),
since function η(x) can have break points, which belong to (0, h). It
is known that function η(x) is an analytical one. Therefore we can
conclude that if η(x) has break points when x ∈ (0, h), then there
are only break points of the second kind.

Assume that the function η(x) on interval (0, h) has N+1 break
points x0, x1, ..., xN .

It should be noticed that

η(xi − 0) = ±∞, η(xi + 0) = ±∞,

where i = 0, N , and signs ± are independent and unknown.
Taking into account the above, solutions are sought on each

interval [0 , x0), (x0, x1), ..., (xN , h]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
η(x0−0)∫
η(x)

wdη = x+ c0, 0 ≤ x ≤ x0;

η(x)∫
η(xi+0)

wdη = x+ ci+1, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN+0)

wdη = x+ cN+1, xN ≤ x ≤ h.

(32)

From equations (32), substituting x = 0, x = xi+1, and x = xN
into the first, the second, and the third equations (32), respectively,
we find required constants c1, c2, ..., cN+1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −
η(x0−0)∫
η(0)

wdη;

ci+1 =
η(xi+1−0)∫
η(xi+0)

wdη − xi+1, i = 0, N − 1;

cN+1 =
η(h)∫

η(xN+0)

wdη − h.

(33)
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Using (33) equations (32) take the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x0−0)∫
η(x)

wdη = −x+
η(x0−0)∫
η(0)

wdη, 0 ≤ x ≤ x0;

η(x)∫
η(xi+0)

wdη = x+
η(xi+1−0)∫
η(xi+0)

wdη − xi+1, xi ≤ x ≤ xi+1;

η(x)∫
η(xN+0)

wdη = x+
η(h)∫

η(xN+0)

wdη − h, xN ≤ x ≤ h,

(34)

where i = 0, N − 1.
From formulas (34) we obtain that

xi+1 − xi =

η(xi+1−0)∫
η(xi+0)

wdη, i = 0, N − 1. (35)

Expressions 0 < xi+1 − xi < h < ∞ imply that under the
assumption about the break points existence the integral on the

right-hand side converges and
η(xi+1−0)∫
η(xi+0)

wdη > 0. In the same way,

from the first and the last equations (34) we obtain that x0 =
η(x0−0)∫
η(0)

wdη and 0 < x0 < h, then

0 <

η(x0−0)∫
η(0)

wdη < h < ∞;

and h− xN =
η(h)∫

η(xN+0)

wdη and 0 < h− xN < h then

0 <

η(x0−0)∫
η(0)

wdη < h < ∞.
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These considerations yield that function η(x) has finite number
of break points and function w(η) has no nonintegrable singularities
for η ∈ (−∞,∞).

Now, setting x = x0, x = xi, and x = xN into the first, the
second, and the third equations in (34), respectively, we have that
all the integrals on the left sides vanish. We add all the equations in
(34) to obtain

0 = −x0 +

η(x0−0)∫
η(0)

wdη + x0 +

η(x1−0)∫
η(x0+0)

wdη − x1 + ...

...+ xN−1 +

η(xN−0)∫
η(xN−1+0)

wdη − xN + xN +

η(h)∫
η(xN+0)

wdη − h. (36)

From (36) we obtain

η(x0−0)∫
η(0)

wdη +

η(h)∫
η(xN+0)

wdη +
N−1∑
i=0

η(xi+1−0)∫
η(xi+0)

wdη = h. (37)

It follows from formulas (35) that

η (xi + 0) = ±∞ and η (xi − 0) = ∓∞, where i = 0, N,

and it is necessary to choose the infinities of different signs.
Thus we obtain that

η(x1−0)∫
η(x0+0)

wdη = ... =

η(xN−0)∫
η(xN−1+0)

wdη =: T ′.

Hence x1 − x0 = ... = xN − xN−1.
Now we can rewrite equation (37) in the following form

η(x0−0)∫
η(0)

wdη +

η(h)∫
η(xN+0)

fdη +NT ′ = h.
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Let T :=
+∞∫
−∞

wdη, then we finally obtain

−
η(0)∫

η(h)

wdη ± (N + 1)T = h, (38)

where η(0), η(h) are defined by formulas (25).
Expression (38) is the DE, which holds for any finite h. Let γ be

a solution of DE (38) and an eigenvalue of the problem. Then, there
are eigenfunction X and Z, which correspond to the eigenvalue γ.
The eigenfunction Z has N+1 zeros on the interval (0, h). It should
be noticed that for every number N + 1 it is necessary to solve two
DEs: for N + 1 and for −(N + 1).

Let us formulate the following
Theorem 4. The set of solutions of DE (38) contains the set

of solutions (eigenvalues) of boundary eigenvalue problem (19)–(21)
with conditions (16)–(18).

The proof of this theorem is almost word-by-word coincides to
the proof of theorem 1.

Now, let us review some theoretical treatments of the derivation
of DEs (30) and (38). We are going to discuss the existence and
uniqueness of system’s (8) solutions.

Let us consider vector form (20) of system (8)

DF = G(F, λ). (39)

Let the right-hand side G be defined and continuous in the
domain Ω ⊂ R

2, G : Ω → R
2. Also we suppose that G satisfies the

Lipschitz condition on F (locally in Ω)1.
Under these conditions system (8) (or system (39)) has a unique

solution in the domain Ω [8, 41, 22].
It is clear that under these conditions system (23) has a unique

solution (of course, the domain of uniqueness Ω′ for variables τ , η
differs from Ω).

1About the Lipschitz condition see the footnote on p. 48.
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Since we seek bounded solutions X and Z; therefore we obtain

Ω ⊂ [−m1,m1]× [−m2,m2],

where
max
x∈[0,h]

|Y | < m1, max
x∈[0,h]

|Z| < m2,

and the previous implies that

Ω′ ⊂ [εf , εf +m2
1]× (−∞,+∞).

It is easy to show that there is no point x∗ ∈ Ω′ such that
X|x=x∗ = 0 and Z|x=x∗ = 0. Indeed, it is known from theory of
autonomous system (see, for example, [41]) that phase trajectories
do not intersect one another in the system’s phase space when right-
hand side of the system is continuous and satisfies the Lipschitz
condition. Since X ≡ 0 and Z ≡ 0 are stationary solutions of system
(8), it is obvious that nonconstant solutions X and Z can not vanish
simultaneously at a certain point x∗ ∈ Ω′ (otherwise the nonconstant
solutions intersect with the stationary solutions and we obtain a
contradiction).

Note 1. If there is a certain value γ2∗ , such that some of the
integrals in DEs (30) or (38) diverge at a certain inner points, then
this simply means that the value γ2∗ is not a solution of chosen DE
and the value γ2∗ is not an eigenvalue of the problem.

Note 2. This problem depends on the initial condition Zh, see
the note on p. 49 for further details.

It should be also noticed that if the first integral is an algebraic
function (with respect to any of its variable), then the solutions of
system (8) are Abelian functions1 [6, 54, 36].

We derived the DEs from the second equation of system (23).
It is possible to do it using the first equation of the system (see
p. 130).

1In the case of TE waves and generalized Kerr nonlinearity in a layer solutions
are expressed in terms of an elliptic function (see Ch. 4). In the case of TM waves
and Kerr nonlinearity in a layer solutions are expressed in terms of hyperelliptic
functions [6, 13, 42] . Hyperelliptic functions are closely connected with Jacobi
inverse problem [13, 15].



C H A P T E R 7

TM WAVE PROPAGATION
IN AN ISOTROPIC LAYER

WITH KERR NONLINEARITY

§1. Statement of the Problem

Let us consider electromagnetic waves propagating through a
homogeneous isotropic nonmagnetic dielectric layer. The layer is
located between two half-spaces: x < 0 and x > h in Cartesian
coordinate system Oxyz. The half-spaces are filled with isotropic
nonmagnetic media without any sources and characterized by per-
mittivities ε1 ≥ ε0 and ε3 ≥ ε0, respectively, where ε0 is the permit-
tivity of free space1. Assume that everywhere μ = μ0, where μ0 is
the permeability of free space.

The electromagnetic field depends on time harmonically [17]

Ẽ (x, y, z, t) = E+ (x, y, z) cosωt+E− (x, y, z) sinωt,

H̃ (x, y, z, t) = H+ (x, y, z) cosωt+H− (x, y, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−.

where
E = (Ex, Ey, Ez)

T , H = (Hx,Hy,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields is a function of three spatial variables.

1Generally, conditions ε1 ≥ ε0 and ε3 ≥ ε0 are not necessary. They are not
used for derivation of DEs, but they are useful for DEs’ solvability analysis.
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential field components on the
media interfaces x = 0, x = h and the radiation condition at infinity:
the electromagnetic field exponentially decays as |x| → ∞ in the
domains x < 0 and x > h.

The permittivity inside the layer is described by Kerr law

ε = ε2 + a |E|2 ,

where a and ε2 > max(ε1, ε3) are positive constants1.
The solutions to the Maxwell equations are sought in the entire

space.
The geometry of the problem is shown in Fig. 1.

0

h

z

x

ε = ε3

ε = ε2 + a|E|2

ε = ε1

Fig. 1.

§2. TM Waves

Let us consider TM waves

E = (Ex, 0, Ez)
T , H = (0,Hy, 0)

T ,

where Ex = Ex(x, y, z), Ez = Ez(x, y, z), and Hy = Hy(x, y, z).

1In §6 the solutions are sought under more general conditions.
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Substituting the fields into Maxwell equations (1) we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Ez
∂y = 0,
∂Ex
∂z − ∂Ez

∂x = iωμHy,
∂Ex
∂y = 0,
∂Hy

∂z = iωεEx,
∂Hy

∂x = −iωεEz .

It is obvious from the first and the third equations of this system
that Ez = Ez(x, z) and Ex = Ex(x, z) do not depend on y. This
implies that Hy does not depend on y.

Waves propagating along medium interface z depend on z har-
monically. This means that the fields components have the form

Ex = Ex(x)e
iγz , Ez = Ez(x)e

iγz , Hy = Hy(x)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).

So we obtain from the latter system [17]⎧⎪⎨⎪⎩
iγEx(x)−E′

z(x) = iωμHy(x),

H ′
y(x) = −iωεEz(x),

iγHy(x) = iωεEx(x),

(2)

where ( · )′ ≡ d
dx .

The following equation can be easily derived from the previous
system

Hy(x) =
1

iωμ

(
iγEx(x)− E′

z(x)
)
. (3)

Differentiating equation (3) and using the second and the third
equations of system (2) we obtain{

γ (iEx (x))
′ − E′′

z (x) = ω2μεEz (x) ,

γ2 (iEx (x))− γE′
z (x) = ω2με (iEx (x)) .

(4)

Let us denote by k20 := ω2μ0ε0 and perform the normalization
according to the formulas x̃ = k0x, d

dx = k0
d
dx̃ , γ̃ = γ

k0
, ε̃j =

εj
ε0
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(j = 1, 2, 3), ã = a
ε0

. Denoting by Z(x̃) := Ez, X(x̃) := iEx and
omitting the tilde symbol, from system (4) we obtain{

−Z ′′ + γX ′ = εZ,

−Z ′ + γX = 1
γ εX.

(5)

It is necessary to find eigenvalues γ of the problem that corre-
spond to surface waves propagating along boundaries of the layer
0 < x < h, i.e., the eigenvalues corresponding to the eigenmodes of
the structure. We seek the real values of the spectral parameter γ
such that real solutions X(x) and Z(x) to system (5) exist (so |E|2
does not depend on z, see the footnote on p. 33 and the note on
p. 74). We consider that

ε =

⎧⎪⎨⎪⎩
ε1, x < 0;

ε2 + a
(
X2 + Z2

)
, 0 < x < h;

ε3, x > h.

(6)

Also we assume that max(ε1, ε3) < γ2 < ε2. This two-sided
inequality naturally appears for an analogous problem in a layer
with a constant permittivity tensor (for further details see Ch. 4,
formula (14)).

Also we assume that functions X and Z are sufficiently smooth

X(x) ∈C (−∞, 0] ∩ C[0, h] ∩ C [h, +∞)∩
∩C1 (−∞, 0] ∩ C1[0, h] ∩ C1 [h, +∞) ;

Z(x) ∈C(−∞,+∞) ∩ C1 (−∞, 0] ∩ C1[0, h] ∩ C1 [h, +∞)∩
∩C2(−∞, 0) ∩ C2(0, h) ∩ C2(h,+∞).

Physical nature of the problem implies these conditions.
It is clear that system (5) is an autonomous one. System (5)

can be rewritten in a normal form (it will be done below). This
system in the normal form can be considered as a dynamical system
with analytical with respect to X and Z right-hand sides1. It is

1Of course, in the domain where these right-hand sides are analytical with
respect to X and Z.
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well known (see, for example [5]) that the solution X and Z of such
a system are analytical functions with respect to the independent
variable as well. This is an important fact for DEs’ derivation.

We consider that γ satisfies the inequality γ2 > max(ε1, ε3).
This condition occurs in the case if at least one of the values ε1 or
ε3 is positive. If both values ε1 and ε3 are negative, then γ2 > 0.

§3. Differential Equations of the Problem

In the domain x < 0 we have ε = ε1. From system (5) we obtain
X ′ = γZ, Z ′ = γ2−ε1

γ X. It implies the equation X ′′ = (γ2 − ε1)X.
Its general solution is

X(x) = A1e
−x

√
γ2−ε1 +Aex

√
γ2−ε1 .

In accordance with the radiation condition we obtain

X(x) = A exp
(
x
√
γ2 − ε1

)
,

Z(x) =

√
γ2−ε1
γ A exp

(
x
√

γ2 − ε1

)
.

(7)

We assume that γ2 − ε1 > 0 itherwise it will be impossible to
satisfy the radiation condition.

In the domain x > h we have ε = ε3. From system (5) we obtain
X ′ = γZ, Z ′ = γ2−ε3

γ X. It implies the equation X ′′ = (γ2 − ε3)X.
Its general solution is

X(x) = Be−(x−h)
√

γ2−ε3 +B1e
(x−h)

√
γ2−ε3 .

In accordance with the radiation condition we obtain

X(x) = B exp
(
−(x− h)

√
γ2 − ε3

)
,

Z(x) = −
√

γ2−ε3
γ B exp

(
−(x− h)

√
γ2 − ε3

)
.

(8)

Here for the same reason as above we consider that γ2−ε3 > 0.
Constants A and B in (7) and (8) are defined by transmission

conditions and initial conditions.
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Inside the layer 0 < x < h system (5) takes the form{
−d2Z

dx2 + γ dX
dx =

(
ε2 + a

(
X2 + Z2

))
Z,

−dZ
dx + γX = 1

γ

(
ε2 + a

(
X2 + Z2

))
X.

(9)

Differentiating the second equation we obtain

−Z ′′ + γX ′ =
2a

γ
(XX ′ + ZZ ′)X +

1

γ

(
ε2 + a

(
X2 + Z2

))
X ′.

Using this equation system (9) can be rewritten in the following
form1⎧⎨⎩dX

dx =
2a(ε2−γ2+a(X2+Z2))X2+γ2(ε2+a(X2+Z2))

γ(ε2+3aX2+aZ2)
Z,

dZ
dx = − 1

γ

(
ε2 − γ2 + a

(
X2 + Z2

))
X.

(10)

Dividing the first equation in system (10) to the second one we
obtain the ordinary differential equation

− (ε2 + 3aX2 + aZ2
) dX
dZ

=

= 2aXZ + γ2
ε2 + a

(
X2 + Z2

)
ε2 − γ2 + a (X2 + Z2)

Z

X
. (11)

Equation (11) can be transformed into a total differential equa-
tion. Indeed, rewrite it into a symmetric form

MdX +NdZ = 0,

where

M =
(
ε2 + 3aX2 + aZ2

) (
ε2 − γ2 + aX2 + aZ2

)
X,

N =
(
2a
(
ε2 − γ2 + aX2 + aZ2

)
X2 + γ2

(
ε2 + aX2 + aZ2

))
Z.

It is easy to check that the relation ∂M
∂Z = ∂N

∂X is satisfied. This
means that equation (11) can be rewritten as a total differential

1Now system (10) is written in a normal form. If the right-hand sides are
analytic functions with respect to X and Z, then the solutions are analytic
functions with respect to its independent variable. We notice it in the end of §2.
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equation (the equation MdX + NdZ = 0 is the total differential
equation). Let us find its solution U(X,Z) (it is the first integral of
system (10)). Rewrite M in the following form

M =
(
ε2 + aZ2

) (
ε2 + aZ2 − γ2

)
X+

+ 3aX3
(
ε2 + aZ2 − γ2

)
+ aX3

(
ε2 + aZ2

)
+ 3a2X5.

Since ∂U
∂x = M ; therefore, we obtain

U(X,Z) =

∫
MdX =

1

2

(
ε2 + aZ2

) (
ε2 + aZ2 − γ2

)
X2+

+
3a

4
X4
(
ε2 + aZ2 − γ2

)
+

a

4
X4
(
ε2 + aZ2

)
+

a2

2
X6 + ϕ(Z).

Let us find ϕ(Z) from the equation ∂U
∂Z = N

aX2Z
(
ε2 + aZ2 − γ2

)
+ aX2Z

(
ε2 + aZ2

)
+

+
3a2

2
X4Z +

a2

2
X4Z + ϕ′(Z) = N.

From this equation we obtain ϕ′(Z) = γ2ε2Z + γ2aZ3. This
implies

ϕ(Z) =
γ2ε2
2

Z2 +
γ2a

4
Z4.

Taking into account derived results the first integral can be
written in the following form

2
(
aZ2 + ε2

) (
ε2 + a

(
X2 + Z2

)) (
2γ2 − (ε2 + a

(
X2 + Z2

)))
=

= γ6C + 3γ2
(
ε2 + a

(
X2 + Z2

))2 − 2
(
ε2 + a

(
X2 + Z2

))3
, (12)

where C is a constant of integration.
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§4. Transmission Conditions

and the Transmission Problem

Tangential components of an electromagnetic field are known
to be continuous at media interfaces. In this case the tangential
components are Hy and Ez. Hence, we obtain

Hy (h+ 0) = Hy (h− 0) , Hy (0− 0) = Hy (0 + 0) ,
Ez (h+ 0) = Ez (h− 0) , Ez (0− 0) = Ez (0 + 0) .

From the continuity conditions for the tangential components
of the fields E and H we obtain

γX(h) − Z ′(h) = H
(h)
y , γX(0) − Z ′(0) = H

(0)
y ,

Z(h) = Ez(h+ 0) = E
(h)
z , Z(0) = Ez(0− 0) = E

(0)
z ,

(13)

where H
(h)
y := i

√
μ√
ε0
Hy(h+ 0), H(0)

y := i
√
μ√
ε0
Hy(0− 0).

The constant E(h)
z := Ez(h+0) is supposed to be known (initial

condition). Let us denote by X0 := X(0), Xh := X(h), Z0 := Z(0),
and Zh := Z(h). So we obtain that A = γ√

γ2−ε1
Z0, B = γ√

γ2−ε3
Zh.

Then from conditions (13) we obtain

H(h)
y = −Zh

ε3√
γ2 − ε3

, H(0)
y = Z0

ε1√
γ2 − ε1

. (14)

In accordance with (5), (6) inside the layer

−Z ′(x) + γX(x) =
1

γ

(
ε2 + a

(
X2(x) + Z2(x)

))
X(x). (15)

Then for x = h, using (13), we obtain from (15)

1

γ

(
ε2 + a

(
X2

h + Z2
h

))
Xh = H(h)

y . (16)

From (16) we obtain the equation with respect to Xh:

X3
h +

ε2 + aZ2
h

a
Xh − γH

(h)
y

a
= 0. (17)
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Under taken assumptions (in regard to ε2 and a) the value
ε2+aZ2

h
a > 0. Hence, equation (17) has at least one real root, which

is considered

Xh =

(
γH

(h)
y

2a
+

√
1

27

(ε2
a

+ Z2
h

)3
+

1

4

(γ
a

)2 (
H

(h)
y

)2)1/3

+

+

(
γH

(h)
y

2a
−
√

1

27

(ε2
a

+ Z2
h

)3
+

1

4

(γ
a

)2 (
H

(h)
y

)2)1/3

.

Using first integral (12) at x = h, we find the value CX
h := C|x=h

from the equation

2
(
aZ2

h + ε2
) (

ε2 + a
(
X2

h + Z2
h

)) (
2γ2 − (ε2 + a

(
X2

h + Z2
h

)))
=

= γ6CX
h + 3γ2

(
ε2 + a

(
X2

h + Z2
h

))2 − 2
(
ε2 + a

(
X2

h + Z2
h

))3
.

(18)

In order to find the values X0 and Z0 it is necessary to solve
the following system1⎧⎪⎪⎨⎪⎪⎩

γε1√
γ2−ε1

Z0 =
(
ε2 + a

(
X2

0 + Z2
0

))
X0,

2
(
aZ2

0 + ε2
) (

ε2 + a
(
X2

0 + Z2
0

)) (
2γ2 − (ε2 + a

(
X2

0 + Z2
0

)))
=

= γ6CX
h + 3γ2

(
ε2 + a

(
X2

0 + Z2
0

))2 − 2
(
ε2 + a

(
X2

0 + Z2
0

))3
.

(19)
It is easy to see from the second equation of system (19) that

the values X0 and Z0 can have arbitrary signs. At the same time
from the first equation of this system we can see that X0 and Z0

have to be positive or negative simultaneously.
Normal components of electromagnetic field are known to be

discontinues at media interfaces. And it is the discontinuity of the
first kind. In this case the normal component is Ex. It is also known
that the value εEx is continuous at media interfaces. From the above

1This system is obtained using formula (15) at x = 0 and the first integral
at the same point.
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and from the continuity of the tangential component Ez it follows
that the transmission conditions for the functions εX and Z are

[εX ]x=0 = 0, [εX ]x=h = 0, [Z]x=0 = 0, [Z]x=h = 0, (20)

where [f ]x=x0 = lim
x→x0−0

f(x) − lim
x→x0+0

f(x) denotes a jump of the

function f at the interface.
We also suppose that functions X(x) and Z(x) satisfy the con-

dition

X(x) = O

(
1

|x|
)

and Z(x) = O

(
1

|x|
)

as |x| → ∞. (21)

Let

D =

(
d
dx 0

0 d
dx

)
,F(X,Z) =

(
X
Z

)
,G(F, γ) =

(
G1

G2

)
,

where X ≡ X(x), Z ≡ Z(x) are unknown functions; G1 ≡ G1(F, γ),
G2 ≡ G2(F, γ) are right-hand sides of system (10). The value γ is a
spectral parameter. Rewrite the problem using new notations.

For the half-space x < 0 and ε = ε1 we obtain

DF−
(

0 γ
γ2−ε1

γ 0

)
F = 0. (22)

Inside the layer 0 < x < h and ε = ε2 + a
(
X2 + Z2

)
, we have

L(F, γ) ≡ DF−G(F, γ) = 0. (23)

For the half-space x > h and ε = ε3 we obtain

DF−
(

0 γ
γ2−ε3

γ 0

)
F = 0. (24)
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Let us formulate the transmission problem (it is possible to
reformulate it as the boundary eigenvalue problem). It is necessary
to find eigenvalues γ and corresponding to them nonzero vectors F
such that F satisfies to equations (22)–(24). Components X, Z of
vector F satisfy transmission conditions (20), condition (21) and
X0, Z0 satisfy to system (19).

Definition 1. The value γ = γ0 such that nonzero solution F
to problem (22)–(24) exists under conditions (19)–(21) is called an
eigenvalue of the problem. Solution F corresponding to the eigen-
value is called an eigenvector of the problem, and components X(x)
and Z(x) of the vector F are called eigenfunctions (see the note on
p. 37).

§5. Dispersion Equation

Introduce the new variables

τ(x) =
ε2 + a

(
X2(x) + Z2(x)

)
γ2

, η(x) = γ
X(x)

Z(x)
τ(x). (25)

Let τ0 =
ε2
γ2 , then

X2 =
γ2

a

η2 (τ − τ0)

η2 + γ2τ2
, Z2 =

γ4

a

τ2 (τ − τ0)

η2 + γ2τ2
, XZ =

γ3

a

τη (τ − τ0)

η2 + γ2τ2
.

Using new variables rewrite system (10) and equation (12){
dτ
dx = 2γ2 τ2η(τ−τ0)(2−τ)

τ(η2+γ2τ2)+2η2(τ−τ0)
,

dη
dx = γ2τ2+η2(τ−1)

τ ,
(26)

η2 =
γ2τ2

(
τ2 −C

)
C + 3τ2 − 2τ3 − 2τ (2− τ) τ0

, (27)

the constant C is not equal to the value of the same name in (12).
Equation (27) is an algebraic quartic one with respect to τ . Its

solution τ = τ(η) can be expressed in explicit form using Cardanus
formulas [28].
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In order to obtain the DE for the propagation constants it is
necessary to find the values η(0), η(h).

It is clear that η(0) = γX(0)
Z(0) τ(0), η(h) = γX(h)

Z(h) τ(h). Taking
into account that X(x)τ(x) = εX(x) and using formulas (13), (14),
it is easy to obtain that

η(0) =
ε1√

γ2 − ε1
> 0, η(h) = − ε3√

γ2 − ε3
< 0. (28)

The value C (we denote it as Cτ
h) can be easily find from first

integral (27). Indeed, the values τ(h) and η(h) are known, using first
integral (27) at x = h we obtain

Cτ
h = τ2 (h)− 2ε23τ (h) (2− τ (h)) (τ (h)− τ0)

ε23 + γ2 (γ2 − ε3) τ2 (h)
, (29)

where τ(h) =
H

(h)
y

γXh
.

If Cτ
h > 0, then equation (27) with respect to τ(h) has a positive

root. It is easy to prove that Cτ
h is strictly greater than zero. Indeed,

it is easy to see from expression (29) that if τ(h) > 2, then the value
Cτ
h > 0, as τ(h) ≥ τ0 > 1 and

(
γ2 − ε3

)
> 0. Let τ(h) ∈ [τ0, 2) .

Reduce to a common denominator expression (29) and replace (if it
is necessary) τ(h) = τ0+α, where 0 < α < 1 we obtain the following
expression

Cτ
h = τ(h)

γ2
(
γ2 − ε3

)
τ3 (h) + ε23 (2α (τ (h)− 1) + τ0 − α)

ε23 + γ2 (γ2 − ε3) τ2 (h)

with strictly positive right-hand side.
It is easy to see that the right-hand side of the second equation

of system (26) is strictly positive. This means that the function
η(x) monotonically increases on interval (0, h). Taking into account
(28) we obtain that the function η(x) can not be differentiable on
the entire interval (0, h). This means that the function η(x) has a
break point. Let x∗ ∈ (0, h) be the break point. From (27) it is
obvious that x∗ is such that τ∗ = τ(x∗) is a root of the equation
Cτ
h+3(τ∗)2−2(τ∗)3−2τ∗(2−τ∗)τ0 = 0. In addition η(x∗−0) → +∞

and η(x∗ + 0) → −∞.
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It is natural to suppose that the function η(x) on interval (0, h)
has several break points x0, x1, ..., xN . The properties of function
η(x) imply

η(xi − 0) = +∞, η(xi + 0) = −∞, где i = 0, N. (30)

Let

w :=
τ

γ2τ2 + η2 (τ − 1)
,

where w = w(η); τ = τ(η) is expressed from equation (15).
Taking into account our hypothesis we will seek to the solutions

on each interval [0 , x0), (x0, x1), ..., (xN , h]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
η(x0)∫
η(x)

wdη = x+ c0, 0 ≤ x ≤ x0;

η(x)∫
η(xi)

wdη = x+ ci, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN )

wdη = x+ cN , xN ≤ x ≤ h.

(31)

Substituting x = 0, x = xi+1, and x = xN into equations (31)
(into the first, the second, and the third, respectively) and taking
into account (30), we find constants c1, c2, . . . , cN+1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −
+∞∫
η(0)

wdη;

ci+1 =
+∞∫
−∞

wdη − xi+1, i = 0, N − 1;

cN+1 =
η(h)∫
−∞

wdη − h.

(32)
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Using (32) we can rewrite equations (31) in the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x0)∫
η(x)

wdη = −x+
+∞∫
η(0)

wdη, 0 ≤ x ≤ x0;

η(x)∫
η(xi)

wdη = x+
+∞∫
−∞

wdη − xi+1, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN )

wdη = x+
η(h)∫
−∞

wdη − h, xN ≤ x ≤ h.

(33)

Introduce the notation T :=
+∞∫
−∞

wdη. It follows from formula

(33) that 0 < xi+1−xi = T < h, where i = 0, N − 1. This implies the
convergence of the improper integral (it will be proved in other way
below). Now consider x in equations (33) such that all the integrals
on the left side vanish (i.e. x = x0, x = xi, and x = xN ), and sum
all equations (33). We obtain

0 = −x0+

+∞∫
η(0)

wdη+x0+T−x1+...+xN−1+T−xN+xN+

η(h)∫
−∞

wdη−h.

Finally we obtain

−

ε1√
γ2−ε1∫

− ε3√
γ2−ε3

wdη + (N + 1)T = h. (34)

Expression (34) is the DE, which holds for any finite h. Let γ be
a solution of DE (34) and an eigenvalue of the problem. Then, there
are eigenfunctions X and Z, which correspond to the eigenvalue γ.
The eigenfunction Z has N + 1 zeros on the interval (0, h).

Notice that improper integrals in DE (34) converge. Indeed,
function τ = τ(η) is bounded as η → ∞ since τ = ε2+aX2+aZ2

γ2 , and
X, Z are bounded.
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Then

|w| =
∣∣∣∣ τ

γ2τ2 + η2(τ − 1)

∣∣∣∣ ≤ 1

αη2 + β
,

where α > 0, β > 0 are constants. It is obvious that improper

integral
∞∫

−∞
dη

αη2+β
converges. Convergence of the improper integrals

in (34) in inner points results from the requirement that the right-
hand side of the second equation of system (26) is positive.

The first equation of system (26) jointly with the first integral
can be integrated in hyperelliptic functions. The solution is expressed
in implicit form by means of hyperelliptic integrals. This is the
simple example of Abelian integrals. The inversion of these integrals
are hyperelliptic functions and they are solutions of system (26).
Hyperelliptic functions are Abelian functions, which are meromor-
phic and periodic functions. Since function η is expressed algebrai-
cally through τ ; therefore, η is a meromorphic periodic function.
This means that the break point x∗ is a pole of function η. The
integral in equation (34) is a more general Abelian integral [6, 36].

Theorem 1 (of equivalence). Boundary eigenvalue problem
(22)–(24) with conditions (19)–(21) has a solution (an eigenvalue)
if and only if this eigenvalue is a solution of DE (34).

Proof. Sufficiency. It is obvious that if we find the solution γ
of DE (34), then we can find functions τ(x) and η(x) from system
(26) and first integral (27). From functions τ(x) and η(x), and using
formulas (25) we find

X(x) = ± γ√
a
η

√
τ − τ0

η2 + γ2τ2
and Z (x) = ± γ2√

a
τ

√
τ − τ0

η2 + γ2τ2
.

(35)
It is an important question how to choose the signs. Let us

discuss it in detail. We know the behavior of the function η = γτ X
Z :

it monotonically increases, and if x = x∗ such that η (x∗) = 0, then
η(x∗−0) < 0, η(x∗+0) > 0; if x = x∗∗ such that η(x∗∗) = ±∞, then
η (x∗∗ − 0) > 0 and η (x∗∗ + 0) < 0. Function η has no other points
of sign’s reversal. To fix the idea, assume that the initial condition
is Z(h) > 0. If η > 0, then the functions X and Z have the same
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signs; if η < 0, the functions X and Z have different signs. Since X
and Z are continuous functions1 we can choose necessary signs in
expressions (35).

Necessity. It follows from the method of obtaining of DE (34)
from system (26) that an eigenvalue of the problem is a solution of
the DE.

It should be also noticed that eigenfunctions (or eigenmodes)
that correspond an eigenvalue γ0 can be easily numerically calculated
from system (9) or (10), (for example, using a Runge-Kutta method).

Introduce the notation J(γ, k) :=
η(h)∫
η(0)

wdη+kT , where the right-

hand side is defined by DE (34) and k = 0, N + 1.
Let

hkinf = inf
γ2∈(max(ε1,ε3),ε2)

J(γ, k),

hksup = sup
γ2∈(max(ε1,ε3),ε2)

J(γ, k).

Let us formulate the sufficient condition of existence at least
one eigenvalue of the theorem.

Theorem 2. Let h satisfies for a certain k = 0, N + 1 the fol-
lowing two-sided inequality

hkinf < h < hksup,

then boundary eigenvalue problem (22)–(24) with conditions (19)–
(21) has at least one solution (an eigenvalue).

The quantities hkinf and hksup can be numerically calculated.

§6. Generalized Dispersion Equation

Here we derive the generalized DE, which holds for any real
values ε2. In addition the sign of the right-hand side of the second
equation in system (26) (see the footnote on p. 43), and conditions

1Of course, we mean that X and Z are continuous in the regions x < 0,
0 < x < h, and x > h.
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max(ε1, ε3) < γ2 < ε2 or 0 < γ2 < ε2 are not taken into account.
These conditions appear in the case of a linear layer and are used
for derivation of DE (34). Though on the nonlinear case it is not
necessary to limit the value γ2 from the right side. At the same time
it is clear that γ is limited from the left side, since this limit appears
from the solutions in the half-spaces.

Now we assume that γ satisfies one of the following inequalities

max(ε1, ε3) < γ2 < +∞,

when either ε1 or ε3 is positive, or

0 < γ2 < +∞,

when both ε1 < 0 and ε3 < 0.
At first we derive the DE from system (26) and first integral

(27). After this we discuss the details of the derivation and condi-
tions when the derivation is possible and the DE is well defined.

Thus, let us consider system (26) and first integral (27){
dτ
dx = 2γ2 τ2η(τ−τ0)(2−τ)

τ(η2+γ2τ2)+2η2(τ−τ0)
,

dη
dx = γ2τ2+η2(τ−1)

τ ;

and η2 =
γ2τ2(τ2−C)

C+3τ2−2τ3−2τ(2−τ )τ0
.

Using first integral (27) it is possible to integrate formally any
of the equations of system (26). As earlier we integrate the second
equation. We can not obtain the solution on the entire interval (0, h),
since function η(x) can have break points, which belong to (0, h).
It is known that function η(x) has break points only of the second
kind (η is an analytical function).

Assume that function η(x) on interval (0, h) has N + 1 break
points x0, x1, ..., xN .

It should be noticed that

η(xi − 0) = ±∞ η(xi + 0) = ±∞,

where i = 0, N , and signs ± are independent and unknown.
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Taking into account the above, solutions are sought on each
interval [0 , x0), (x0, x1), ..., (xN , h]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
η(x0−0)∫
η(x)

wdη = x+ c0, 0 ≤ x ≤ x0;

η(x)∫
η(xi+0)

wdη = x+ ci+1, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN+0)

wdη = x+ cN+1, xN ≤ x ≤ h.

(36)

From equations (36), substituting x = 0, x = xi+1, and x = xN
into the first, the second, and the third equations (36), respectively,
we find required constants c1, c2, ..., cN+1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −
η(x0−0)∫
η(0)

wdη;

ci+1 =
η(xi+1−0)∫
η(xi+0)

wdη − xi+1, i = 0, N − 1;

cN+1 =
η(h)∫

η(xN+0)

wdη − h.

(37)

Using (37) equations (36) take the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x0−0)∫
η(x)

wdη = −x+
η(x0−0)∫
η(0)

wdη, 0 ≤ x ≤ x0;

η(x)∫
η(xi+0)

wdη = x+
η(xi+1−0)∫
η(xi+0)

wdη − xi+1, xi ≤ x ≤ xi+1;

η(x)∫
η(xN+0)

wdη = x+
η(h)∫

η(xN+0)

wdη − h, xN ≤ x ≤ h,

(38)

where i = 0, N − 1.
From formulas (38) we obtain that

xi+1 − xi =

η(xi+1−0)∫
η(xi+0)

wdη, i = 0, N − 1. (39)
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Expressions 0 < xi+1 − xi < h < ∞ imply that under the
assumption about the break point existence the integral on the right

side converges and
η(xi+1−0)∫
η(xi+0)

wdη > 0. In the same way, from the first

and the last equations (38) we obtain that x0 =
η(x0−0)∫
η(0)

wdη and

0 < x0 < h then

0 <

η(x0−0)∫
η(0)

wdη < h < ∞;

and h− xN =
η(h)∫

η(xN+0)

wdη and 0 < h− xN < hthen

0 <

η(x0−0)∫
η(0)

wdη < h < ∞.

These considerations yield that the function w(η) has no non-
integrable singularities for η ∈ (−∞,∞). And also this proves that
the assumption about a finite number break points is true.

Now, setting x = x0, x = xi, and x = xN into the first, the
second, and the third equations in (38), respectively, we have that
all the integrals on the left sides vanish. We add all the equations in
(38) to obtain

0 = −x0 +

η(x0−0)∫
η(0)

wdη + x0 +

η(x1−0)∫
η(x0+0)

wdη − x1 + ...

...+ xN−1 +

η(xN−0)∫
η(xN−1+0)

wdη − xN + xN +

η(h)∫
η(xN+0)

wdη − h. (40)
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From (40) we obtain

η(x0−0)∫
η(0)

wdη +

η(h)∫
η(xN+0)

wdη +
N−1∑
i=0

η(xi+1−0)∫
η(xi+0)

wdη = h. (41)

It follows from formulas (39) that

η (xi + 0) = ±∞ and η (xi − 0) = ∓∞, where i = 0, N,

and it is necessary to choose the infinities of different signs.
Thus we obtain that

η(x1−0)∫
η(x0+0)

wdη = ... =

η(xN−0)∫
η(xN−1+0)

wdη =: T ′.

Hence x1 − x0 = ... = xN − xN−1.
Now we can rewrite equation (41) in the following form

η(x0−0)∫
η(0)

wdη +

η(h)∫
η(xN+0)

fdη +NT ′ = h.

Let T ≡
+∞∫
−∞

wdη, the we finally obtain

−
η(0)∫

η(h)

wdη ± (N + 1)T = h, (42)

where η(0), η(h) are defined by formulas (28).
Expression (42) is the DE, which holds for any finite h. Let γ be

a solution of DE (42) and an eigenvalue of the problem. Then, there
are eigenfunctions X and Z, which correspond to the eigenvalue γ.
The eigenfunction Z has N+1 zeros on the interval (0, h). It should
be noticed that for every number N + 1 it is necessary to solve two
DEs: for N + 1 and for −(N + 1).
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Let us formulate the following
Theorem 3. The set of solutions of DE (42) contains the set

of solutions (eigenvalues) of boundary eigenvalue problem (22)–(24)
with conditions (19)–(21).

Proof. It is obvious that this theorem generalises Theorem 1.
It is also obvious that any eigenvalue of the problem is a solution
of the DE. It is easy to understand where additional solutions of
the DE occur from (the solutions, which are not eigenvalues). If the
values ε2 and a are arbitrary real values, then equation (17) and
system (19) can have several roots. And it is possible that among
these roots we can not choose roots that correspond to the problem.
In other words, for each group of three roots we have DE (42). It
is clear that not all the solutions of these DEs are eigenvalues of
the problem. A solution of the DE is an eigenvalue of the problem
if and only if transmission conditions (20) are satisfied. That is, if
we have a solution γ of the DE, on the one hand, then we can find
X0, Z0, and Xh. On the other hand, we can find the values X0, Z0,
and Xh from equation (17) and system (19). The solution γ is an
eigenvalue if and only if each value found in one way coincides with
corresponding value found in other way. Using this criterion we can
determine eigenvalues among solutions of the DE. This criterion can
be easily used for numerical calculation.

Now, let us review some theoretical treatments of derivation
of DEs (34) and (42). We are going to discuss the existence and
uniqueness of system’s (10) solutions.

Let us consider vector form (23) of system (10)

DF = G(F, λ). (43)

Let the right-hand side G be defined and continuous in the
domain Ω ⊂ R

2, G : Ω → R
2. Also we suppose that G satisfies the

Lipschitz condition on F (locally in Ω)1.
Under these conditions system (10) (or system (43)) has a

unique solution in the domain Ω [8, 41, 22].

1About the Lipschitz condition see the footnote on p. 48.
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It is clear that under these conditions system (26) has a unique
solution (of course, the domain of uniqueness Ω′ for variables τ , η
differs from Ω).

Since we seek bounded solutions X and Z; therefore we obtain

Ω ⊂ [−m1,m1]× [−m2,m2],

where
max
x∈[0,h]

|Y | < m1, max
x∈[0,h]

|Z| < m2,

and the previous implies that

Ω′ ⊂ [εf , εf +m2
1]× (−∞,+∞).

It is easy to show that there is no point x∗ ∈ Ω′, such that
X|x=x∗ = 0 and Z|x=x∗ = 0. Indeed, it is known from theory of
autonomous system (see, for example, [41]) that phase trajectories
do not intersect one another in the system’s phase space when right-
hand side of the system is continuous and satisfies the Lipschitz
condition. Since X̃ ≡ 0 and Z̃ ≡ 0 are stationary solutions of system
(10), it is obvious that the nonconstant solutions X and Z can not
vanish simultaneously at a certain point x∗ ∈ Ω′ (otherwise the
nonconstant solutions intersect with the stationary solutions and
we obtain a contradiction).

Note 1. If there is a certain value γ2∗ , such that some of the
integrals in DEs (34) or (42) diverge at certain inner points, then
this simply means that the value γ2∗ is not a solution of chosen DE
and the value γ2∗ is not an eigenvalue of the problem.

Note 2. This problem depends on the initial condition Zh, see
the note on p. 49 for further details.

We derived the DEs from the second equation of system (26).
It is possible to do it using the first equation of the system.

The DE obtained from the first equation of system (26) and
first integral (27) is given below. We omit the derivation of the
DE. At first the DE was derived under conditions ε2 > max(ε1, ε3)
and a > 0. It is rather easy to generalise the DE for arbitrary real
values ε2 and a. Though we do not do it and below it will be quite
understandable why.
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The DE has the form

−
τ(0)∫

+
√

Cτ
h

gdτ +

+
√

Cτ
h∫

τ(h)

gdτ + 2(N + 1)

τ∗∫
+
√

Cτ
h

gdτ = h, (∗)

where g = +
γτ
√

τ2−Cτ
h√

Cτ
h+3τ2−2τ3−2τ(2−τ)τ0

; τ∗ is such that η(τ∗) = ±∞;

Cτ
h is defined by formula (29); τ(h) = H

(h)
y

γXh
and τ(0) is defined as a

root of the equation

ζ4 +
2ε21

γ2 (γ2 − ε1)
ζ3 −

(
ε21
(
3γ2 + 2ε2

)
γ4 (γ2 − ε1)

+ Cτ
h

)
ζ2+

+
2ε21ε2

γ4 (γ2 − ε1)
ζ − ε21C

τ
h

γ2 (γ2 − ε1)
= 0.

It is obvious that the limits of integration in DE (∗) are defined
rather complicated. In spite of the fact that the integrand is simpler
than the one in DE (34) it is more convenient to use (particularly
for calculation) the DE obtained from the second equation of system
(26). This is the reason why we do not give the derivation of DE (∗).
DE (∗) is given here for demonstration the fact that it is possible to
use the first equation of system (26).

Dispersion curves (DC) calculated from equation (42) are shown
in Fig. 2, 3.

DCs for both linear and nonlinear cases are shown in Fig. 2.
Solid curves denote the solutions of DE (42); dashed curves denote
the solution of equation (42) when a = 0, i.e. the solution of the DE
for linear medium in the layer (see (19), Ch. 5 or formula (44) in this
chapter). The following parameters are used ε1 = 4, ε2 = 9, ε3 = 1
(these parameters are applied to both linear and nonlinear cases);
in addition for the nonlinear case the values a = 0.1 (nonlinearity
coefficient) and Zh = 1 (initial condition) are used. Dashed lines are
described by formulas h = 6 (thickness of the layer), γ2 = 4 (lower
bound for γ2), γ2 = 9 (upper bound for γ2 in the case of linear
medium in the layer).
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As it is known (see Ch. 5) and it is shown in Fig. 2, the line
γ2 = 9 is an asymptote for DCs in the linear case. It should be
noticed that in the linear case in the region γ2 ≥ ε2 DCs are absent.
It can be proved that function h ≡ h(γ) defined from equation (42)
is continuous at the neighborhood γ2 = ε2 when a 
= 0 (see Fig. 2).
This is the important distinction between linear and nonlinear cases.

Further, it can be proved that function h ≡ h(γ) defined from
equation (42) when a 
= 0 has the following property:

lim
γ2→+∞

h(γ) = 0.

In Fig. 2 for h = 6 in the case of a linear layer there are 4
eigenvalues (black dots where the line h = 6 intersects DCs). These
eigenvalues correspond to 4 eigenmodes. In the case of a nonlin-
ear layer in Fig. 2 are shown 7 eigenvalues (uncolored dots). These
eigenvalues correspond to 7 eigenmodes. Taking into account the last
paragraph’s statement it is clear that in this case there is infinite
number of eigenvalues. What is more, the sequence {γi}∞i=1 of the
eigenvalues is an unbounded monotonically increasing sequence. And
the sequence of layer’s thicknesses {hi}∞i=1, which correspond to the
sequence {γi}∞i=1 is a bounded by zero monotonically decreasing
sequence.

In Fig. 3 are shown DCs for the nonlinear layer with different
values of nonlinearity coefficient a. The solid curves denote the solu-
tion of DE (42); the dashed curve denotes the solutions of equation
(42) when a = 0, i.e. the solutions of the DE for linear medium
in the layer (see (19), Ch. 5 or formula (44) in this chapter). The
following parameters are used: ε1 = 4, ε2 = 9, ε3 = 1 (these parame-
ters have to do with both linear and nonlinear cases); in addition
for the nonlinear case the value Zh = 1 (initial condition) is used.

In Fig. 3 for DCs (solid curves) 1–7 the following values of
nonlinearity coefficient a are used: 1 – a = 100; 2 – a = 10; 3 –
a = 1; 4 – a = 0.1; 5 – a = 0.01; 6 – a = 0.001; 7 – a = 0.0001. The
DC for the linear case is not almost seen so closely it fits to the DC
for the nonlinear layer (a = 0.0001).

It is easy to see in Fig. 3 that the less nonlinearity coefficient a
the more stretched DCs in the nonlinear case. The maximum points
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of the curves h(γ) (in Fig. 3 they are marked by asterisks) move
to the right. The parts of the DCs that locate below the maximum
points asymptotically tend to the DCs for the linear case as a → 0.

§7. Passage to the Limit

in the Generalized Dispersion Equation

Let us consider the passage to the limit as a → 0. The value
a = 0 corresponds to the case of a linear medium in the layer. Here
the two cases are possible:

a) ε2 > 0;
b) ε2 < 0 (metamaterial case).
Let us examine the (а) case. The DE for a linear case is well

known [64] and has the form

tg
(
h
√

ε2 − γ2
)
=

ε2
√

ε2 − γ2
(
ε1
√

γ2 − ε3 + ε3
√

γ2 − ε1

)
ε1ε3 (ε2 − γ2)− ε22

√
γ2 − ε3

√
γ2 − ε1

. (44)

Let

f =
τ

γ2τ2 + η2 (τ − 1)
, f1 =

ε2
ε2 − γ2

1
ε22

ε2−γ2 + η2
.

Using passage to the limit as a → 0 we obtain the function
f1 from the function f . We seek bounded solutions X(x) and Z(x).
This implies that the denominator of the function f1 can not vanish.
What is more, the function f as a → 0 tends to the function f1
uniformly on x ∈ [0, h]. It is possible to pass the limit under integral
sign as a → 0 in (42) using results of classical analysis

h =
ε2

ε2 − γ2
×

×

⎛⎜⎜⎜⎝−

ε1√
γ2−ε1∫

− ε3√
γ2−ε3

1
ε22

ε2−γ2 + η2
dη + (N + 1)

+∞∫
−∞

1
ε22

ε2−γ2 + η2
dη

⎞⎟⎟⎟⎠ . (45)
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The integrals in (45) are calculated analytically. Calculating
these integrals we obtain

h
√

ε2 − γ2 =

= arctg
ε2
√

ε2 − γ2
(
ε1
√

γ2 − ε3 + ε3
√

γ2 − ε1

)
ε1ε3 (ε2 − γ2)− ε22

√
γ2 − ε3

√
γ2 − ε1

+ (N + 1) π.

(46)

Expression (46) can be easily transformed into expression (44).
Let us examine the (b) case. We have ε2 < 0 (metamaterial)

and the DE for the linear case has the form (the derivation see in
Ch. 5):

e2h
√

γ2−ε2 =

=
ε1
√

γ2 − ε2 − ε2
√

γ2 − ε1

ε1
√

γ2 − ε2 + ε2
√

γ2 − ε1
· ε3
√
γ2 − ε2 − ε2

√
γ2 − ε3

ε3
√
γ2 − ε2 + ε2

√
γ2 − ε3

, (47)

where γ2 − ε1 > 0, γ2 − ε2 > 0, and γ2 − ε3 > 0.
In the same way as above, passing to the limit in the function

f as a → 0 we obtain f2 = |ε2|
γ2−ε2

1

η2− ε2
2

γ2−ε2

. Passing to the limit in

equation (42) as a → 0 and integrating the function f2 we obtain

2h
√

γ2 − ε2 =

= − ln

∣∣∣∣∣∣
η − |ε2|

γ2−ε2

η + |ε2|
γ2−ε2

∣∣∣∣∣∣
∣∣∣∣∣∣

ε1√
γ2−ε1

− ε3√
γ2−ε3

+ (N + 1) ln

∣∣∣∣∣∣
η − |ε2|

γ2−ε2

η + |ε2|
γ2−ε2

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

−∞

.

It is obviously that the multiplier behind (N +1) is equal to 0.
Done simple calculation we obtain formula (47).

The results of this section show that it is possible to pass to the
limit as a → 0. DE (42) for the nonlinear case turn into equation
(44) or (47) for the linear case as a → 0.
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§8. First Approximation

for Eigenvalues of the Problem

Let
F (a, γ) = h, (48)

where F (a, γ) is the left-hand side of equation (42).
Expression (48) defines the implicit function γ ≡ γ(a). Let us

assume that it is a differentiable function at the neighborhood a = 0
(below we shall prove that it is really so). Expand it into Taylor series

γ ≡ γ (a) = γ (0)+
dγ (a)

da

∣∣∣∣
a=0

a+O
(
a2
)
= γ0+γ1a+O

(
a2
)
, (49)

where γ0 is a solution to the equation (44).
Calculating the total differential of equation (48) and expressing

the required derivative we obtain

dγ (a)

da
= −

∂F (a,γ)
∂a

∂F (a,γ)
∂γ

. (50)

Using (34) we find

∂F (a, γ)

∂a
= −

η(0)∫
η(h)

∂G (a, γ, η)

∂a
dη+(N + 1)

+∞∫
−∞

∂G (a, γ, η)

∂a
dη (51)

and

∂F (a, γ)

∂γ
= G

(
a, γ,

ε1√
γ2 − ε1

)
γε1√

(γ2 − ε1)
3
+

+G

(
a, γ,− ε3√

γ2 − ε3

)
γε3√

(γ2 − ε3)
3
−

−
η(0)∫

η(h)

∂G (a, γ, η)

∂γ
dη + (N + 1)

+∞∫
−∞

∂G (a, γ, η)

∂γ
dη, (52)
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where
G (a, γ, η) =

τ

γ2τ2 + η2 (τ − 1)
, (53)

η(0) = ε1√
γ2−ε1

, η(h) = − ε3√
γ2−ε3

(see formulas (28)).

In formula (53) the value τ is a function with respect to η and
it is defined from equation (27).

It can be proved that ∂G(a,γ,η)
∂a and ∂G(a,γ,η)

∂γ tend to the func-

tions ∂G(a,γ,η)
∂a

∣∣∣
a=0

= G1(γ, η) and ∂G(a,γ,η)
∂γ

∣∣∣
a=0

= G2(γ, η), respec-
tively, uniformly on x ∈ [0, h] as a → 0. Assuming that the functions
∂G(a,γ,η)

∂a and ∂G(a,γ,η)
∂γ are continuous with respect to η under any

fixed value a and using results of classical analysis it is possible to
pass to the limit under the integral sign. Then formulas (51) and
(52) take the forms

∂F (a, γ)

∂a

∣∣∣∣
a=0

= −
η(0)∫

η(h)

G1 (γ, η) dη + (N + 1)

+∞∫
−∞

G1 (γ, η) dη, (54)

∂F (a, γ)

∂γ

∣∣∣∣
a=0

= G

(
0, γ,

ε1√
γ2 − ε1

)
γε1√

(γ2 − ε1)
3
+

+G

(
0, γ,− ε3√

γ2 − ε3

)
γε3√

(γ2 − ε3)
3
−

−
η(0)∫

η(h)

G2 (γ, η) dη + (N + 1)

+∞∫
−∞

G2 (γ, η) dη, (55)

where
G (0, γ, η) =

ε2
ε2 − γ2

1
ε22

ε2−γ2 + η2
, (56)

η(0) = ε1√
γ2−ε1

, η(h) = − ε3√
γ2−ε3

(see formulas (28)).
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Using (53) we find

∂G (a, γ, η)

∂a
= −∂τ

∂a

γ2τ2 + η2

(γ2τ2 + η2 (τ − 1))2
, (57)

∂G (a, γ, η)

∂γ
= −∂τ

∂γ

γ2τ2 + η2

(γ2τ2 + η2 (τ − 1))2
− 2γτ3

(γ2τ2 + η2 (τ − 1))2
.

(58)

Pass to the limit as a → 0 from formula (27) we obtain

∂τ

∂a

∣∣∣∣
a=0

=

(
γ2τ20 + η2

)
2τ0
(
γ2τ20 + η2 (τ0 − 1)

) ( ∂Cτ
h

∂a

∣∣∣∣
a=0

)
. (59)

Using (29) and passing to the limit as a → 0 we obtain

∂Cτ
h

∂a

∣∣∣∣
a=0

= 2
ε2
γ2

ε22
(
γ2 − ε3

)
+ ε23

(
ε2 − γ2

)
γ2ε23 + ε22 (γ

2 − ε3)

(
∂τ (h)

∂a

∣∣∣∣
a=0

)
. (60)

Using τ(h) =
H

(h)
y

γXh
and passing to the limit as a → 0 we obtain

τ (h)|a=0 =
ε2
γ2

;
∂τ (h)

∂a

∣∣∣∣
a=0

=
γ2ε23 + ε22

(
γ2 − ε3

)
γ2ε22 (γ

2 − ε3)
Z2
h. (61)

Taking into account (61) we can finally calculate (60)

∂Cτ
h

∂a

∣∣∣∣
a=0

= 2
ε22
(
γ2 − ε3

)
+ ε23

(
ε2 − γ2

)
γ4ε2 (γ2 − ε3)

Z2
h. (62)

From expressions (29) and (61) it is clear that

Cτ
h |a=0 =

(
ε2
γ2

)2

. (63)

Further, from (25) as a → 0 we find

∂τ

∂γ

∣∣∣∣
a=0

= −2
ε2
γ3

. (64)



140 Part I. Boundary Eigenvalue Problems in Layers

With the help of (56) we can calculate values required in (55)

G

(
0, γ,

ε1√
γ2 − ε1

)
γε1√

(γ2 − ε1)
3
=

=
γε1ε2√

γ2 − ε1
(
ε22 (γ

2 − ε1) + ε21 (ε2 − γ2)
) ,

G

(
0, γ,− ε3√

γ2 − ε3

)
γε3√

(γ2 − ε3)
3
=

=
γε2ε3√

γ2 − ε3
(
ε22 (γ

2 − ε3) + ε23 (ε2 − γ2)
) .

(65)

Now we can find explicit expressions for the functions G1(γ, η)
and G2(γ, η) from formulas (54) and (55), respectively. Using (57),
(59), and (62) we obtain

G1(γ, η) = −k

(
ε22
γ2 + η2

)2
(

ε22
ε2−γ2 + η2

)3 , (66)

where k = γ4
ε22(γ2−ε3)+ε23(ε2−γ2)
ε22(γ

2−ε3)(ε2−γ2)3
Z2
h; using (58) and (64) we obtain

G2(γ, η) =
2γε2

(ε2 − γ2)2
η2(

ε22
ε2−γ2 + η2

)2 . (67)

With the help of expressions (66) and (67) we can write required
derivative (50) in the following form

γ1 ≡ dγ (a)

da

∣∣∣∣
a=0

=
γ3
(
ε22
(
γ2 − ε3

)
+ ε23

(
ε2 − γ2

))
Z2
h

2ε32 (γ
2 − ε3) (ε2 − γ2)

P (γ)

Q (γ)
, (68)

where

P = −
η(0)∫

η(h)

(
ε22
γ2 + η2

)2
(

ε22
ε2−γ2 + η2

)3dη + (N + 1)

+∞∫
−∞

(
ε22
γ2 + η2

)2
(

ε22
ε2−γ2 + η2

)3 dη, (69)
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and

Q = −
η(0)∫

η(h)

η2(
ε22

ε2−γ2 + η2
)2dη + (N + 1)

+∞∫
−∞

η2(
ε22

ε2−γ2 + η2
)2 dη+

+

(
ε2 − γ2

)2
2

ε1√
γ2 − ε1

(
ε22 (γ

2 − ε1) + ε21 (ε2 − γ2)
)+

+

(
ε2 − γ2

)2
2

ε3√
γ2 − ε3

(
ε22 (γ

2 − ε3) + ε23 (ε2 − γ2)
) , (70)

η(0) = ε1√
γ2−ε1

, η(h) = − ε3√
γ2−ε3

(see formulas (28)).

It is clear from formulas (68)–(70) that under conditions for ε1,
ε2, ε3, γ, and a (see §1) derivative (50) is positive.

The integral in (69) and (70) are calculated elementary. Calcu-
lating the integrals and using (where it is necessary) (45) we obtain
the required derivative in the following form

γ1 ≡ dγ (a)

da

∣∣∣∣
a=0

=

(
ε22
(
γ2 − ε3

)
+ ε23

(
ε2 − γ2

))
Z2
h

8γε32 (ε2 − γ2) (γ2 − ε3)

P1

Q1
, (71)

where

P1 =
(
2γ2 − ε2

) (
2ε22k1 +

(
3ε2 + 2γ2

)
k2
)
+

+
3ε22 − 4γ2ε2 + 4γ4

ε2
h (72)

and

Q1 =
ε1 (ε2 − ε1)√

γ2 − ε1
(
ε22 (γ

2 − ε1) + ε21 (ε2 − γ2)
)+

+
ε3 (ε2 − ε3)√

γ2 − ε3
(
ε22 (γ

2 − ε3) + ε23 (ε2 − γ2)
) + h

ε2
, (73)
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where

k1 =
ε1

√
(γ2 − ε1)

3(
ε22 (γ

2 − ε1) + ε21 (ε2 − γ2)
)2 +

ε3

√
(γ2 − ε3)

3(
ε22 (γ

2 − ε3) + ε23 (ε2 − γ2)
)2 ,

k2 =
ε1
√

γ2 − ε1
ε22 (γ

2 − ε1) + ε21 (ε2 − γ2)
+

ε3
√

γ2 − ε3
ε22 (γ

2 − ε3) + ε23 (ε2 − γ2)
.

Using (71)–(73) we write (50) at the point γ = γ0, a = 0 :

γ1 ≡ dγ (a)

da

∣∣∣∣
a=0

=
ε22
(
γ2 − ε3

)
+ ε23

(
ε2 − γ2

)
8γε32 (ε2 − γ2) (γ2 − ε3)

P1 (γ0)

Q1 (γ0)
Z2
h. (74)

Now it is possible to find γ1 using (74), and then expansion (49)
is obtained.

Let us consider the function F (a, γ)−h = 0 in the neighborhood
of point a = 0, γ = γ0. The function τ = τ(η) is a solution of
algebraic equation (27) and coefficients of this algebraic equation
are continuous functions with respect to a and γ. Taking this and
formulas formulas (27), (29), and (34) into account we obtain that
the function F (a, γ) − h = 0 is continuous in the neighborhood of
point a = 0, γ = γ0. As it is easy to see from formulas (51) and (52),
in the neighborhood of point a = 0, γ = γ0 the function under con-
sideration has partial derivatives with respect to a and γ. It follows
from formula (73) that partial derivative with respect to γ does not
vanish at the point a = 0, γ = γ0. Notice that F (a, γ)−F (0, γ0) = 0
at the point. This implies that the equation F (a, γ)−h = 0 is unique
solvable with respect to γ in a neighborhood of point a = 0, γ = γ0
and γ ≡ γ(a). From formula (72) it is clear that partial derivative
with respect to a of the function under consideration is also con-
tinuous at the point a = 0, γ = γ0. This implies that the function
γ ≡ γ(a) has a derivative at the point a = 0 and this derivative is
expressed by formula (50) [29]. This finishes the proof of validity of
the first approximation. It should be noticed that all conclusions are
made under conditions for ε1, ε2, ε3, a, and γ (see §1).



C H A P T E R 8

TM WAVE PROPAGATION
IN AN ANISOTROPIC LAYER
WITH KERR NONLINEARITY

§1. Statement of the Problem

Let us consider electromagnetic waves propagating through a
homogeneous anisotropic nonmagnetic dielectric layer. The layer is
located between two half-spaces: x < 0 and x > h in Cartesian
coordinate system Oxyz. The half-spaces are filled with isotropic
nonmagnetic media without any sources and characterized by per-
mittivities ε1 ≥ ε0 and ε3 ≥ ε0, respectively, where ε0 is the permit-
tivity of free space1. Assume that everywhere μ = μ0, where μ0 is
the permeability of free space.

The electromagnetic field depends on time harmonically [17]

Ẽ (x, y, z, t) = E+ (x, y, z) cosωt+E− (x, y, z) sinωt,

H̃ (x, y, z, t) = H+ (x, y, z) cosωt+H− (x, y, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Ex, Ey, Ez)

T , H = (Hx,Hy,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields is a function of three spatial variables.

1Generally, conditions ε1 ≥ ε0 and ε3 ≥ ε0 are not necessary. They are not
used for derivation of DEs, but they are useful for DEs’ solvability analysis.
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential field components on the
media interfaces x = 0, x = h and the radiation condition at infinity:
the electromagnetic field exponentially decays as |x| → ∞ in the
domains x < 0 and x > h.

The permittivity inside the layer is described by the diagonal
tensor

ε̃ =

⎛⎝ εxx 0 0
0 εyy 0
0 0 εzz

⎞⎠ ,

where εxx = ε2+b |Ex|2+a |Ez|2, εzz = ε2+a |Ex|2+b |Ez|2; and a,
b, ε2 > max (ε1, ε3) are positive constants1. It does not matter what
a form εyy has. Since εyy is not contained in the equations below for
the TM case.

The solutions to the Maxwell equations are sought in the entire
space.

The geometry of the problem is shown in Fig. 1.

0

h

z

x
ε = ε3

ε = ε̃

ε = ε1

Fig. 1.

§2. TM Waves

Let us consider TM waves

E = (Ex, 0, Ez)
T , H = (0,Hy, 0)

T ,

where Ex = Ex(x, y, z), Ez = Ez(x, y, z), and Hy = Hy(x, y, z).
1In §6 the solutions are sought under more general conditions.
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Substituting the fields into Maxwell equations (1) we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Ez
∂y = 0,
∂Ex
∂z − ∂Ez

∂x = iωμHy,
∂Ex
∂y = 0,
∂Hy

∂z = iωεxxEx,
∂Hy

∂x = −iωεzzEz.

It is obvious from the first and the third equations of this system
that Ez = Ez(x, z) and Ex = Ex(x, z) do not depend on y. It implies
that Hy does not depend on y.

Waves propagating along medium interface z depend on z har-
monically. This means that the fields components have the form

Ex = Ex(x)e
iγz , Ez = Ez(x)e

iγz , Hy = Hy(x)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).

So we obtain from the latter system [17]⎧⎪⎨⎪⎩
iγEx(x)− E′

z(x) = iωμHy(x),

H ′
y(x) = −iωεzzEz(x),

iγHy(x) = iωεxxEx(x),

(2)

where ( · )′ ≡ d
dx .

The following equation can be easily derived from the previous
system

Hy(x) =
1

iωμ

(
iγEx(x)− E′

z(x)
)
. (3)

Differentiating equation (3) and using the second and the third
equations of system (2) we obtain{

γ (iEx (x))
′ − E′′

z (x) = ω2μεzzEz (x) ,

γ2 (iEx (x))− γE′
z (x) = ω2μεxx (iEx (x)) .

(4)
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Let us denote by k20 := ω2με0 and perform the normalization
according to the formulas x̃ = k0x, d

dx = k0
d
dx̃ , γ̃ = γ

k0
, ε̃j =

εj
ε0

(j = 1, 2, 3), ã = a
ε0

, b̃ = b
ε0

. Denoting by Z(x̃) := Ez, X(x̃) := iEx

and omitting the tilde symbol, system (4) takes the form{
−Z ′′ + γX ′ = εzzZ,

−Z ′ + γX = 1
γ εxxX.

(5)

It is necessary to find eigenvalues γ of the boundary eigen-
value problem that correspond to surface waves propagating along
boundaries of the layer 0 < x < h, i.e., the eigenvalues corresponding
to the eigenmodes of the structure. We seek the real values of spectral
parameter γ such that real solutions X(x) and Z(x) to system (5)
exist (see the footnote on p. 33 and also the remark on p. 74). We
consider that

ε =

⎧⎪⎨⎪⎩
ε1, x < 0;

ε̃, 0 < x < h;

ε3, x > h.

(6)

We assume that the spectral parameter γ satisfies the follow-
ing two-sided inequality max(ε1, ε3) < γ2 < ε2. This inequality
naturally occurs in the analogous problem for a linear layer (where
the permittivity inside the layer is constant) (for further details see
inequality (14) in Ch. 4).

Also we assume that functions X and Z are sufficiently smooth

X(x) ∈C (−∞, 0] ∩ C[0, h] ∩ C [h, +∞)∩
∩C1 (−∞, 0] ∩C1[0, h] ∩ C1 [h, +∞) ,

Z (x) ∈C(−∞,+∞) ∩ C1 (−∞, 0] ∩ C1[0, h] ∩ C1 [h, +∞)∩
∩C2(−∞, 0) ∩C2(0, h) ∩ C2(h,+∞).

Physical nature of the problem implies these conditions.
It is clear that system (5) is an autonomous one. System (5)

can be rewritten in a normal form (it will be done below). This
system in the normal form can be considered as a dynamical system
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with analytical with respect to X and Z right-hand sides1. It is well
known (see, for example [5]) that the solution X and Z of such a
system are analytical functions with respect to independent variable
as well. This is an important fact for DEs’ derivation.

System (5) is the system for the anisotropic layer. Systems for
the half-spaces can be easily obtained from system (5). For this
purpose in system (5) it is necessary to put εxx = εzz = ε, where ε
is the permittivity of the isotropic half-space.

We consider that γ satisfies the inequality γ2 > max(ε1, ε3).
This condition occurs in the case if at least one of the values ε1 or
ε3 is positive. If both values ε1 and ε3 are negative, then γ2 > 0.

§3. Differential Equations of the Problem

In the domain x < 0 we have ε = ε1. From system (5) we obtain
the following system X ′ = γZ, Z ′ = γ2−ε1

γ X. From this system
we obtain the equation X ′′ = (γ2 − ε1)X. Its general solution is
X(x) = A1e

−x
√

γ2−ε1+Aex
√

γ2−ε1 . In accordance with the radiation
condition we obtain the solution of the system

X (x) = A exp
(
x
√

γ2 − ε1

)
,

Z (x) =

√
γ2−ε1
γ A exp

(
x
√

γ2 − ε1

)
.

(7)

We assume that γ2 − ε1 > 0 otherwise it will be impossible to
satisfy the radiation condition.

In the domain x > h we have ε = ε3. From system (5) we obtain
the following system X ′ = γZ, Z ′ = γ2−ε3

γ X. From this system
we obtain the equation X ′′ = (γ2 − ε3)X. Its general solution is
X(x) = Be−(x−h)

√
γ2−ε3 +B1e

(x−h)
√

γ2−ε3 . In accordance with the
radiation condition we obtain the solution of the system

X (x) = B exp
(
− (x− h)

√
γ2 − ε3

)
,

Z (x) = −
√

γ2−ε3
γ B exp

(
− (x− h)

√
γ2 − ε3

)
.

(8)

1Of course, in the domain where these right-hand sides are analytical with
respect to X and Z.
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Here for the same reason as above we consider that γ2−ε3 > 0.
Constants A and B in (7) and (8) are defined by transmission

conditions and initial conditions.
Inside the layer 0 < x < h system (5) takes the form{

−d2Z
dx2 + γ dX

dx =
(
ε2 + aX2 + bZ2

)
Z,

−dZ
dx + γX = 1

γ

(
ε2 + bX2 + aZ2

)
X.

(9)

System (9) can be rewritten in the following form1

⎧⎨⎩dX
dx =

γ2(ε2+aX2+bZ2)+2a(ε2+bX2+aZ2−γ2)X2

γ(ε2+3bX2+aZ2)
Z,

dZ
dx = − 1

γ

(
ε2 − γ2 + bX2 + aZ2

)
X.

(10)

From system (10) we obtain the ordinary differential equation

− (ε2 + 3bX2 + aZ2
) dX
dZ

=

= 2aXZ + γ2
ε2 + aX2 + bZ2

ε2 + bX2 + aZ2 − γ2
Z

X
. (11)

After multiplying by
(
ε2 + bX2 + aZ2 − γ2

)
X equation (11)

becomes a total differential equation. Its solution (the first integral
of system (9)) can be easily found and can be written in the following
form2

X2
(
2
(
ε2 + bX2 + aZ2

) (
ε2 + bX2 + aZ2 − γ2

)− γ2bX2
)
+

+ γ2
(
2ε2 + bZ2

)
Z2 = C, (12)

where C is a constant of integration.

1Now system (10) is written in a normal form. If the right-hand sides are
analytic functions with respect to X and Z, then the solutions are analytic
functions with respect to its independent variable. We notice it in the end of §2.

2All details about derivation see in Ch. 5 and Ch. 6.
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§4. Transmission Conditions

and the Transmission Problem

Tangential components of an electromagnetic field are known
to be continuous at media interfaces. In this case the tangential
components are Hy and Ez. Hence we obtain

Hy(h+ 0) = Hy(h− 0), Hy(0− 0) = Hy(0 + 0),
Ez(h+ 0) = Ez(h− 0), Ez(0− 0) = Ez(0 + 0).

From the continuity conditions for the tangential components
of the fields E and H we obtain

γX(h) − Z ′(h) = H
(h)
y , γX(0) − Z ′(0) = H

(0)
y ,

Z(h) = Ez(h+ 0) = E
(h)
z , Z(0) = Ez(0− 0) = E

(0)
z ,

(13)

where H
(h)
y := i

√
μ√
ε0
Hy(h+ 0), H(0)

y := i
√
μ√
ε0
Hy(0− 0).

The constant E
(h)
z := Ez(h + 0) is supposed to be known (the

initial condition). Let us denote by X0 := X(0), Xh := X(h), Z0 :=
Z(0), and Zh := Z(h). So we obtain that A = γ√

γ2−ε3
Z0, B =

γ√
γ2−ε3

Zh.

Then from conditions (13) we obtain

H(h)
y = −Zh

ε3√
γ2 − ε3

, H(0)
y = Z0

ε1√
γ2 − ε1

. (14)

In accordance with (9) inside the layer

−Z ′(x) + γX(x) =
1

γ

(
ε2 + bX2(x) + aZ2(x)

)
X(x). (15)

Then for x = h, using (13), we obtain from (15)

1

γ

(
ε2 + bX2

h + aZ2
h

)
Xh = H(h)

y . (16)

From (16) we obtain the equation with respect to Xh:

X3
h +

ε2 + aZ2
h

b
Xh − γH

(h)
y

b
= 0. (17)
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Under taken assumptions (in regard to ε2, a, and b) the value
ε2+aZ2

h
a > 0. Hence, equation (17) has at least one real root, which

is considered

Xh =

⎛⎝γH
(h)
y

2b
+

√
1

27

(
ε2 + aZ2

h

b

)3

+
1

4

(γ
b

)2 (
H

(h)
y

)2⎞⎠1/3

+

+

⎛⎝γH
(h)
y

2b
−
√

1

27

(
ε2 + aZ2

h

b

)3

+
1

4

(γ
b

)2 (
H

(h)
y

)2⎞⎠1/3

.

Using first integral (12) at x = h, we find the value CX
h := C|x=h

CX
h = γ2

(
2ε2 + bZ2

h

)
Z2
h − γ2bX4

h+

+ 2X2
h

(
ε2 + bX2

h + aZ2
h

) (
ε2 + bX2

h + aZ2
h − γ2

)
.

(18)

In order to find the values X0 and Z0 it is necessary to solve
the following system1⎧⎪⎪⎨⎪⎪⎩

γε1√
γ2−ε1

Z0 =
(
ε2 + bX2

0 + aZ2
0

)
X0,

γ2
(
2ε2 + bZ2

0

)
Z2
0 − γ2bX4

0+

+ 2X2
0

(
ε2 + bX2

0 + aZ2
0

) (
ε2 + bX2

0 + aZ2
0 − γ2

)
= CX

h .

(19)
It is easy to see from the second equation of system (19) that

the values X0 and Z0 can have arbitrary signs. At the same time
from the first equation of this system we can see that X0 and Z0

have to be positive or negative simultaneously.
Normal components of electromagnetic field are known to be

discontinues at media interfaces. And it is the discontinuity of the
first kind. In this case the normal component is Ex. It is also known
that the value εEx is continuous at media interfaces. From the above

1This system is obtained using formula (15) at x = 0 and the first integral
at the same point.



Ch. 8. TM Waves in an Anisotropic Layer with Kerr Nonlinearity 151

and from the continuity of the tangential component Ez it follows
that the transmission conditions for the functions εX and Z are

[εX ]x=0 = 0, [εX ]x=h = 0, [Z]x=0 = 0, [Z]x=h = 0, (20)

where [f ]x=x0 = lim
x→x0−0

f(x) − lim
x→x0+0

f(x) denotes a jump of the

function f at the interface.
We also suppose that functions X(x) and Z(x) satisfy the con-

dition

X(x) = O

(
1

|x|
)

and Z(x) = O

(
1

|x|
)

as |x| → ∞. (21)

Let

D =

(
d
dx 0

0 d
dx

)
,F(X,Z) =

(
X
Z

)
,G(F, γ) =

(
G1

G2

)
,

where X ≡ X(x), Z ≡ Z(x) are unknown functions; G1 ≡ G1(F, γ),
G2 ≡ G2(F, γ) are right-hand sides of system (10). The value γ is a
spectral parameter. Rewrite the problem using new notations.

For the half-space x < 0 and ε = ε1 we obtain

DF−
(

0 γ
γ2−ε1

γ 0

)
F = 0. (22)

Inside the layer 0 < x < h and ε = ε̃ we have

L(F, γ) ≡ DF−G(F, γ) = 0. (23)

For the half-space x > h and ε = ε3 we obtain

DF−
(

0 γ
γ2−ε3

γ 0

)
F = 0. (24)

Let us formulate the transmission problem (it is possible to
reformulate it as the boundary eigenvalue problem). It is necessary
to find eigenvalues γ and corresponding to them nonzero vectors F
such that F satisfies to equations (22)–(24). Components X, Z of
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vector F satisfy transmission conditions (20), condition (21) and
X0, Z0 satisfy to system (19).

Definition 1. The value γ = γ0 such that nonzero solution F
to problem (22)–(24) exists under conditions (19)–(21) is called an
eigenvalue of the problem. Solution F corresponding to the eigen-
value is called an eigenvector of the problem, and components X(x)
and Z(x) of the vector F are called eigenfunctions (see the note on
p. 37).

§5. Dispersion Equation

Introduce the new variables

τ(x) =
ε2 + bX2(x) + aZ2(x)

γ2
, η(x) = γ

X(x)

Z(x)
τ(x). (25)

Let τ0 =
ε2
γ2 , then

X2 =
γ2η2 (τ − τ0)

bη2 + aγ2τ2
, Z2 =

γ4τ2 (τ − τ0)

bη2 + aγ2τ2
, XZ =

γ3τη (τ − τ0)

bη2 + aγ2τ2
.

Using the new variables rewrite system (10) and equation (12)⎧⎨⎩dτ
dx =

2γ2ητ2(τ−τ0)(τ(bη2+aγ2τ2)(b−a(τ−1))+b(a−b)(τ−τ0)(η2−γ2τ2))
(bη2+aγ2τ2)(τ(bη2+aγ2τ2)+2b(τ−τ0)η2)

,
dη
dx = τ−1

τ η2 + γ2τ0 + γ2(τ − τ0)
aη2+bγ2τ2

bη2+aγ2τ2 ,

(26)

η4 =
2γ2τ2

b

(τ − τ0) (aτ(τ − 1) + bτ0)− a
(
C − τ20

)
C + 3τ2 − 2τ3 − 2τ(2− τ)τ0

η2+

+
γ4τ4

b2
b(τ − τ0) (2aτ0 + b(τ − τ0))− a2

(
C − τ20

)
C + 3τ2 − 2τ3 − 2τ(2 − τ)τ0

, (27)

the constant C is not equal to the value of the same name in (12).
Equation (27) is an algebraic sextic one with respect to τ and

biquadratic one with respect to η.
In order to obtain the dispersion equation for propagation con-

stants it is necessary to find the values η(0), η(h).
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It is clear that η(0) = γX(0)
Z(0) τ(0), η(h) = γX(h)

Z(h) τ(h). Taking
into account that X(x)τ(x) = εX(x) and using formulas (13), (14),
it is easy to obtain that

η(0) =
ε1√

γ2 − ε1
> 0, η(h) = − ε3√

γ2 − ε3
< 0. (28)

The value C (we denote it as Cτ
h) can be easily find from first

integral (27). Indeed, the values τ(h) and η(h) are known, using first
integral (27) at x = h we obtain

Cτ
h =

1
ε43

(γ2−ε3)
2 + 2γ2τ2

b
ε23

γ2−ε3
a+ γ4τ4

b2 a2
×

×
(

ε43
(γ2 − ε3)

2

(−3τ2 + 4τ0τ + 2τ2(τ − τ0)
)
+

+
2γ2τ2

b

ε23
γ2 − ε3

(
(τ − τ0) (aτ(τ − 1) + bτ0) + aτ20

)
+

+
γ4τ4

b2
(
b(τ − τ0) (2aτ0 + b(τ − τ0)) + a2τ20

))
, (29)

where τ = τ(h) =
H

(h)
y

γXh
.

It is easy to see that the right-hand side of the second equation
of system (26) is strictly positive. This means that the function η(x)
monotonically increases on the interval (0, h). Taking into account
(28) we obtain that the function η(x) can not be differentiable on
the entire interval (0, h). This means that the function η(x) has a
break point. Let x∗ ∈ (0, h) be the break point. From (27) it is
obvious that x∗ is such that τ∗ = τ(x∗) is a root of the equation
Cτ
h+3(τ∗)2−2(τ∗)3−2τ∗(2−τ∗)τ0 = 0. In addition η(x∗−0) → +∞

and η(x∗ + 0) → −∞.
It is natural to suppose that the function η(x) on the interval

(0, h) has several break points x0, x1, ..., xN . The properties of
function η(x) imply

η(xi − 0) = +∞, η(xi + 0) = −∞, where i = 0, N. (30)
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Let

w :=
τ

(τ − 1)η2 + γ2τ0τ + γ2τ(τ − τ0)
aη2+bγ2τ2

bη2+aγ2τ2

,

where w = w(η); τ = τ(η) is expressed from equation (15).
Taking into account our hypothesis we will seek to the solutions

on each interval [0 , x0), (x0, x1), ..., (xN , h]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
η(x0)∫
η(x)

wdη = x+ c0, 0 ≤ x ≤ x0;

η(x)∫
η(xi)

wdη = x+ ci, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN )

wdη = x+ cN , xN ≤ x ≤ h.

(31)

Substituting x = 0, x = xi+1, and x = xN into equation (31)
(into the first, the second, and the third, respectively) and taking
into account (30), we find constants c1, c2, . . . , cN+1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −
+∞∫
η(0)

wdη;

ci+1 =
+∞∫
−∞

wdη − xi+1, i = 0, N − 1;

cN+1 =
η(h)∫
−∞

wdη − h.

(32)

Using (32) we can rewrite equations (31) in the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x0)∫
η(x)

wdη = −x+
+∞∫
η(0)

wdη, 0 ≤ x ≤ x0;

η(x)∫
η(xi)

wdη = x+
+∞∫
−∞

wdη − xi+1, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN )

wdη = x+
η(h)∫
−∞

wdη − h, xN ≤ x ≤ h.

(33)
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Introduce the notation T :=
+∞∫
−∞

wdη. It follows from formula

(33) that 0 < xi+1−xi = T < h, where i = 0, N − 1. This implies the
convergence of the improper integral (it will be proved in other way
below). Now consider x in equations (33) such that all the integrals
on the left side vanish (i.e. x = x0, x = xi, and x = xN ), and sum
all equations (33). We obtain

0 = −x0+

+∞∫
η(0)

wdη+x0+T−x1+...+xN−1+T−xN+xN+

η(h)∫
−∞

wdη−h.

This formula implies

−

ε1√
γ2−ε1∫

− ε3√
γ2−ε3

wdη + (N + 1)T = h. (34)

Expression (34) is the DE, which holds for any finite h. Let γ be
a solution of DE (34) and an eigenvalue of the problem. Then, there
are eigenfunctions X and Z, which correspond to the eigenvalue γ.
The eigenfunction Z has N + 1 zeros on the interval (0, h).

Notice that improper integrals in DE (34) converge. Indeed,
function τ = τ(η) is bounded as η → ∞ since τ = ε2+bX2+aZ2

γ2 , and
X, Z are bounded. Then

|w| =
∣∣∣∣∣∣ τ

(τ − 1)η2 + γ2τ0τ + γ2τ(τ − τ0)
aη2+bγ2τ2

bη2+aγ2τ2

∣∣∣∣∣∣ ≤ 1

αη2 + β
,

where α > 0, β > 0 are constants. It is obvious that improper

integral
∞∫

−∞
dη

αη2+β converges. Convergence of the improper integrals

in (34) in inner points results from the requirement that the right-
hand side of the second equation of system (26) is positive.
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The first equation of system (26) jointly with the first integral
can be integrated in Abelian functions. The solution is expressed in
implicit form by means of Abelian integrals. The inversion of these
integrals are Abelian functions and they are solutions of system (26).
Abelian functions are meromorphic and periodic ones. Since function
η is expressed algebraically through τ ; therefore η is a meromorphic
periodic function. This means that the break point x∗ is a pole of
function η [6, 36].

Theorem 1 (of equivalence). Boundary eigenvalue problem
(22)–(24) with conditions (19)–(21) has a solution (an eigenvalue)
if and only if this eigenvalue is a solution of DE (34).

Proof. Sufficiency. It is obvious that if we find the solution γ
of DE (34), then we can find functions τ(x) and η(x) from system
(26) and first integral (27). From functions τ(x) and η(x), and using
formulas (25) we find

X(x) = ±γη

√
τ − τ0

bη2 + aγ2τ2
and Z (x) = ±γ2τ

√
τ − τ0

bη2 + aγ2τ2
.

(35)
It is an important question how to choose the signs. Let us

discuss it in detail. We know the behavior of the function η = γτ X
Z :

it monotonically increases, and if x = x∗ such that η (x∗) = 0, then
η (x∗ − 0) < 0, η (x∗ + 0) > 0, and if x = x∗∗ such that η (x∗∗) =
±∞, then η (x∗∗ − 0) > 0 and η (x∗∗ + 0) < 0. Function η has no
other points of sign’s reversal. To fix the idea, assume that the initial
condition is Z(h) > 0. If η > 0, then functions X and Z have the
same signs; if η < 0, the functions X and Z have different signs.
Since X and Z are continuous1 we can choose necessary signs in
expressions (35).

Necessity. It follows from the method of obtaining of DE (34)
from system (26) that an eigenvalue of the problem is a solution of
the DE.

1Of course, we mean that X and Z are continuous functions in the domains
x < 0, 0 < x < h, and x > h.
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It should be also noticed that eigenfunctions (or eigenmodes)
that correspond an eigenvalue γ0 can be easily numerically calculated
from system (9) or (10), (for example, using a Runge-Kutta method).

Introduce the notation J(γ, k) :=
η(h)∫
η(0)

wdη+kT , where the right-

hand side is defined by DE (34) and k = 0, N + 1.
Let

hkinf = inf
γ2∈(max(ε1,ε3),ε2)

J(γ, k),

hksup = sup
γ2∈(max(ε1,ε3),ε2)

J(γ, k).

Let us formulate the sufficient condition of existence at least
one eigenvalue of the theorem.

Theorem 2. Let h satisfies for a certain k = 0, N + 1 the fol-
lowing two-sided inequality

hkinf < h < hksup,

then boundary eigenvalue problem (22)–(24) with conditions (19)–
(21) has at least oe solution (an eigenvalue).

The quantities hkinf and hksup can be numerically calculated.

§6. Generalized Dispersion Equation

Here we derive the generalized DE, which holds for any real
values ε2. In addition the sign of the right-hand side of the second
equation in system (26) (see the footnote on p. 43), and conditions
max(ε1, ε3) < γ2 < ε2 or 0 < γ2 < ε2 are not taken into account.
These conditions appear in the case of a linear layer and are used
for derivation of DE (34). Though on the nonlinear case it is not
necessary to limit the value γ2 from the right side. At the same time
it is clear that γ is limited from the left side, since this limit appears
from the solutions in the half-spaces (where the permittivities are
constants).

Now we assume that γ satisfies one of the following inequalities

max(ε1, ε3) < γ2 < +∞,
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when at least one of the values ε1 or ε3 is positive, or

0 < γ2 < +∞,

when both ε1 < 0 and ε3 < 0.
At first we derive the DE from system (26) and first integral

(27), and then we discuss the details of derivation and conditions
when the derivation is possible and the DE is well defined.

Using first integral (27) it is possible to integrate formally any of
the equations of system (26). As earlier we shall integrate the second
equation. We can not obtain the solution on the entire interval (0, h),
since function η(x) can have break points, which belong to (0, h).
It is known that function η(x) has break points only of the second
kind (η is an analytical function).

Assume that function η(x) on interval (0, h) has N + 1 break
points x0, x1, ..., xN .

It should be noticed that

η(xi − 0) = ±∞, η(xi + 0) = ±∞,

where i = 0, N , and signs ± are independent and unknown.
Taking into account the above, solutions are sought on each

interval [0 , x0), (x0, x1), ..., (xN , h]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
η(x0−0)∫
η(x)

wdη = x+ c0, 0 ≤ x ≤ x0;

η(x)∫
η(xi+0)

wdη = x+ ci+1, xi ≤ x ≤ xi+1, i = 0, N − 1;

η(x)∫
η(xN+0)

wdη = x+ cN+1, xN ≤ x ≤ h.

(36)

From equations (36), substituting x = 0, x = xi+1, and x = xN
into the first, the second, and the third equations (36), respectively,
we find required constants c1, c2, ..., cN+1:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −
η(x0−0)∫
η(0)

wdη;

ci+1 =
η(xi+1−0)∫
η(xi+0)

wdη − xi+1, i = 0, N − 1;

cN+1 =
η(h)∫

η(xN+0)

wdη − h.

(37)

Using (37) equations (36) take the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x0−0)∫
η(x)

wdη = −x+
η(x0−0)∫
η(0)

wdη, 0 ≤ x ≤ x0;

η(x)∫
η(xi+0)

wdη = x+
η(xi+1−0)∫
η(xi+0)

wdη − xi+1, xi ≤ x ≤ xi+1;

η(x)∫
η(xN+0)

wdη = x+
η(h)∫

η(xN+0)

wdη − h, xN ≤ x ≤ h,

(38)

where i = 0, N − 1.
From formulas (38) we obtain that

xi+1 − xi =

η(xi+1−0)∫
η(xi+0)

wdη, (39)

where i = 0, N − 1.
Expressions 0 < xi+1 − xi < h < ∞ imply that under the

assumption about the break points existence the integral on the

right side converges and
η(xi+1−0)∫
η(xi+0)

wdη > 0. In the same way, from

the first and the last equations (38) we obtain that x0 =
η(x0−0)∫
η(0)

wdη

and 0 < x0 < h then

0 <

η(x0−0)∫
η(0)

wdη < h < ∞;
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and h− xN =
η(h)∫

η(xN+0)

wdη and 0 < h− xN < h then

0 <

η(x0−0)∫
η(0)

wdη < h < ∞.

These considerations yield that the function w(η) has no non-
integrable singularities for η ∈ (−∞,∞). And also this proves that
the assumption about a finite number break points is true.

Now, setting x = x0, x = xi, and x = xN into the first, the
second, and the third equations in (38), respectively, we have that
all the integrals on the left sides vanish. We add all the equations in
(38) to obtain

0 = −x0 +

η(x0−0)∫
η(0)

wdη + x0 +

η(x1−0)∫
η(x0+0)

wdη − x1 + ...

...+ xN−1 +

η(xN−0)∫
η(xN−1+0)

wdη − xN + xN +

η(h)∫
η(xN+0)

wdη − h. (40)

From (40) we obtain

η(x0−0)∫
η(0)

wdη +

η(h)∫
η(xN+0)

wdη +

N−1∑
i=0

η(xi+1−0)∫
η(xi+0)

wdη = h. (41)

It follows from formulas (39) that

η (xi + 0) = ±∞ and η (xi − 0) = ∓∞, where i = 0, N,

and it is necessary to choose the infinities of different signs.
Thus we obtain

η(x1−0)∫
η(x0+0)

wdη = ... =

η(xN−0)∫
η(xN−1+0)

wdη =: T ′.
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Hence x1 − x0 = ... = xN − xN−1.
Now we can rewrite equation (41) in the following form

η(x0−0)∫
η(0)

wdη +

η(h)∫
η(xN+0)

fdη +NT ′ = h.

Let T :=
+∞∫
−∞

wdη, then we finally obtain

−
η(0)∫

η(h)

wdη ± (N + 1)T = h, (42)

where η(0), η(h) are defined by formulas (28).
Expression (42) is the DE, which holds for any finite h. Let γ be

a solution of DE (42) and an eigenvalue of the problem. Then, there
are eigenfunctions X and Z, which correspond to the eigenvalue γ.
The eigenfunction Z has N+1 zeros on the interval (0, h). It should
be noticed that for every number N + 1 it is necessary to solve two
DEs: for N + 1 and for −(N + 1).

Let us formulate the following
Theorem 3. The set of solutions of DE (42) contains the set

of solutions (eigenvalues) of boundary eigenvalue problem (22)–(24)
with conditions (19)–(21).

Proof. It is obvious that this theorem generalises Theorem 1.
It is also obvious that any eigenvalue of the problem is a solution
of the DE. It is easy to understand where additional solutions of
the DE occur from (the solutions, which are not eigenvalues). If the
values ε2, a, and b are arbitrary real values, then equation (17) and
system (19) can have several roots. And it is possible that among
these roots we can not choose roots that correspond to the problem.
In other words, for each group of three roots we have DE (42). It
is clear that not all the solutions of these DE are eigenvalues of the
problem. A solution of the DE is an eigenvalue of the problem if
and only if transmission conditions (20) are satisfied. That is, if we
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have a solution γ of the DE, on the one hand, then we can find
X0, Z0, and Xh. On the other hand, we can find the values X0, Z0,
and Xh from equation (17) and system (19). The solution γ is an
eigenvalue if and only if each value found in one way coincides with
corresponding value found in other way. Using this criterion we can
determine eigenvalues among solutions of the DE. This criterion can
be easily used for numerical calculation.

Now, let us review some theoretical treatments of derivation
of DEs (34) and (42). We are going to discuss the existence and
uniqueness of system’s (10) solutions.

Let us consider vector form (23) of system (10):

DF = G(F, λ). (43)

Let the right-hand side G be defined and continuous in the
domain Ω ⊂ R

2, G : Ω → R
2. Also we suppose that G satisfies the

Lipschitz condition on F (locally in Ω)1.
Under these conditions system (10) (or (43)) has a unique so-

lution in the domain Ω [8, 41, 22].
It is clear that under these conditions system (26) has a unique

solution (of course, the domain of uniqueness Ω′ for variables τ , η
differs from Ω).

Since we seek bounded solutions X and Z; therefore, we obtain

Ω ⊂ [−m1,m1]× [−m2,m2],

where
max
x∈[0,h]

|Y | < m1, max
x∈[0,h]

|Z| < m2

and the previous implies that

Ω′ ⊂ [εf , εf +m2
1]× (−∞,+∞).

It is easy to show that there is no point x∗ ∈ Ω′, such that
X|x=x∗ = 0 and Z|x=x∗ = 0. Indeed, it is known from theory of
autonomous system (see, for example, [41]) that phase trajectories

1About the Lipschitz condition see the footnote on p. 48.
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do not intersect one another in the system’s phase space when right-
hand side of the system is continuous and satisfies the Lipschitz
condition. Since X̃ ≡ 0 and Z̃ ≡ 0 are stationary solutions of system
(10), it is obvious that the nonconstant solutions X and Z can not
vanish simultaneously at a certain point x∗ ∈ Ω′ (otherwise the
nonconstant solutions intersect with the stationary solutions and
we obtain a contradiction).

Note 1. If there is a certain value γ2∗ such that some of the
integrals in DEs (34) or (42) diverge at certain inner points, then
this simply means that the value γ2∗ is not a solution of chosen DE
and the value γ2∗ is not an eigenvalue of the problem.

Note 2. This problem depends on the initial condition, see the
note on p. 49 for further details.

We derived the DEs from the second equation of system (26). It
is possible to do it using the first equation of the system (see p. 130).

For positive values of parameters a, b, and ε2 the behavior of
dispersion curves are shown in Fig. 2, 3 Ch. 7 (see p. 132, 132).
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C H A P T E R 9

TE AND TM WAVES
GUIDED BY A CIRCLE CYLINDRICAL WAVEGUIDE

Let us consider three-dimensional space R
3 with Cartesian co-

ordinate system Oxyz. The space is filled by isotropic medium with
constant permittivity ε ≥ ε0, where ε0 is the permittivity of free
space. In this medium a circle cylindrical waveguide is placed. The
waveguide is filled by anisotropic nonmagnetic medium. The wave-
guide has cross section W :=

{
(x, y) : x2 + y2 < R2

}
and its gen-

erating line (the waveguide axis) is parallel to the axis Oz. We
shall consider electromagnetic waves propagating along the wave-
guide axis, that is eigenmodes of the structure.

Let us consider also cylindrical coordinate system Oρϕz. Axis
Oz of cylindrical coordinate system coincides with axis Oz of Car-
tesian coordinate system.

The electromagnetic field depends on time harmonically [17]

Ẽ (ρ, ϕ, z, t) = E+ (ρ, ϕ, z) cosωt+E− (ρ, ϕ, z) sinωt,

H̃ (ρ, ϕ, z, t) = H+ (ρ, ϕ, z) cosωt+H− (ρ, ϕ, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Eρ, Eϕ, Ez)

T , H = (Hρ,Hϕ,Hz)
T ,

and ( · )T denotes the operation of transposition and

Eρ = Eρ(ρ, ϕ, z), Eϕ = Eϕ(ρ, ϕ, z), Ez = Ez(ρ, ϕ, z),
Hρ = Hρ(ρ, ϕ, z), Hϕ = Hϕ(ρ, ϕ, z), Hz = Hz(ρ, ϕ, z).
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential components on the media
interfaces (on the boundary of the waveguide) and the radiation
condition at infinity: the electromagnetic field exponentially decays
as ρ → ∞.

The permittivity in the waveguide is described by the diagonal
tensor

ε̃ =

⎛⎝ ερρ 0 0
0 εϕϕ 0
0 0 εzz

⎞⎠ ,

where ερρ, εϕϕ, εzz are constants.
The solutions to the Maxwell equations are sought in the entire

space.
The geometry of the problem is shown on Fig. 1. The waveguide

is infinite along axis Oz.

0

z

ρ

ϕ

R

ε2
μ2

μ1

ε1

Fig. 1.

Rewrite system (1) in the expanded form⎧⎪⎨⎪⎩
1
ρ
∂Hz
∂ϕ − ∂Hϕ

∂z = −iωερρEρ,
∂Hρ

∂z − ∂Hz
∂ρ = −iωεϕϕEϕ,

1
ρ
∂(ρHϕ)

∂ρ − 1
ρ
∂Hρ

∂ϕ = −iωεzzEz,

⎧⎪⎨⎪⎩
1
ρ
∂Ez
∂ϕ − ∂Eϕ

∂z = iωμHρ,
∂Eρ

∂z − ∂Ez
∂ρ = iωμHϕ,

1
ρ
∂(ρEϕ)

∂ρ − 1
ρ
∂Eρ

∂ϕ = iωμHz.

(2)
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Since the waveguide structure has circular symmetry; therefore,
sought-for solutions are periodical functions with respect to ϕ. This
means that the components of the electromagnetic field have the
form

Eρ = Eρ(ρ, z)e
inϕ, Eϕ = Eϕ(ρ, z)e

inϕ, Ez = Ez(ρ, z)e
inϕ,

Hρ = Hρ(ρ, z)e
inϕ, Hϕ = Hϕ(ρ, z)e

inϕ, Hz = Hz(ρ, z)e
inϕ.

(3)
where n = 0, 1, 2, . . .

Taking into account formulas (3) system (2) takes the form⎧⎪⎨⎪⎩
in
ρ Hz − ∂Hϕ

∂z = −iωερρEρ,
∂Hρ

∂z − ∂Hz
∂ρ = −iωεϕϕEϕ,

1
ρ
∂(ρHϕ)

∂ρ − in
ρ Hρ = −iωεzzEz,

⎧⎪⎨⎪⎩
in
ρ Ez − ∂Eϕ

∂z = iωμHρ,
∂Eρ

∂z − ∂Ez
∂ρ = iωμHϕ,

1
ρ
∂(ρEϕ)

∂ρ − in
ρ Eρ = iωμHz.

(4)
Setting n = 0, from (4) we obtain⎧⎪⎨⎪⎩
∂Hϕ

∂z = iωερρEρ,
∂Eρ

∂z − ∂Ez
∂ρ = iωμHϕ,

1
ρ
∂(ρHϕ)

∂ρ = −iωεzzEz,

⎧⎪⎨⎪⎩
∂Eϕ

∂z = −iωμHρ,
∂Hρ

∂z − ∂Hz
∂ρ = −iωεϕϕEϕ,

1
ρ
∂(ρEϕ)

∂ρ = iωμHz.

(5)

Thus system (1) breaks up into two independent systems (5).
It follows from system (5) that it is possible to consider two (in-
dependent) polarizations of electromagnetic field (E,H). The one
corresponds to the first system in (5) and has the form

E = (Eρ, 0, Ez)
T , H = (0,Hϕ, 0)

T . (6)

And the other one corresponds to the second system in (5) and
has the form

E = (0, Eϕ, 0)
T , H = (Hρ, 0,Hz)

T . (7)

Waves (solutions to the Maxwell equations) propagating along
waveguide axis depend on z harmonically.
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From the above we obtain for waves (6)

Eρ = Eρ(ρ)e
i(nϕ+γz), Ez = Ez(ρ)e

i(nϕ+γz), Hϕ = Hϕ(ρ)e
i(nϕ+γz),

where γ is the propagation constant.
Substituting these components into the first system in (5) we

obtain ⎧⎪⎨⎪⎩
iγHϕ = iωερρEρ,

iγEρ − dEz
dρ = iωμHϕ,

1
ρ
d(ρHϕ)

dρ = −iωεzzEz,

where functions Eρ, Ez, Hϕ depend on variable ρ. Hence we have
the system of ordinary differential equations.

From the above we obtain for waves (7)

Eϕ = Eϕ(ρ)e
i(nϕ+γz), Hρ = Hρ(ρ)e

i(nϕ+γz), Hz = Hz(ρ)e
i(nϕ+γz),

where γ is the spectral parameter (propagation constant).
Substituting these components into the second system in (5) we

obtain ⎧⎪⎨⎪⎩
iγEϕ = −iωμHρ,

iγHρ − dHz
dρ = −iωεϕϕEϕ,

1
ρ
d(ρEϕ)

dρ = iωμHz,

where functions Eϕ, Hρ, Hz depend on variable ρ. Hence we have
the system of ordinary differential equations again.

In both cases (6) and (7) it is possible to consider each compo-
nent of electromagnetic field as a function of three spatial variables
(ρ, ϕ, z). After substituting these components into system (1) we
obtain that each component does not depend on ϕ.

Waves (6) are called TM-polarized electromagnetic waves1, or
simply TM waves.

Waves (7) are called TE-polarized electromagnetic waves2, or
simply TE waves.

1transverse-magnetic.
2transverse-electric.
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The discussion about TE and TM waves in linear and nonlin-
ear media see on the p. 19, with the replacement of a layer by a
cylindrical waveguide.

In the case when n 
= 0, there are no such simple waves as (6)
and (7) (see, for example, [19]). But also two polarizations (TE and
TM waves, respectively) exist

E = (Eρ, Eϕ, 0)
T , H = (Hρ,Hϕ,Hz)

T (8)

and
E = (Eρ, Eϕ, Ez)

T , H = (Hρ,Hϕ, 0)
T . (9)

Let us review the consequences of using polarizations (8) and
(9) for linear and nonlinear media inside the waveguide.

Let us consider polarized waves (8), where the components have
the form

Eρ = Eρ(ρ)e
i(nϕ+γz), Eϕ = Eϕ(ρ)e

i(nϕ+γz), Ez = 0,
Hρ = Hρ(ρ)e

i(nϕ+γz), Hϕ = Hϕ(ρ)e
i(nϕ+γz), Hz = Hz(ρ)e

i(nϕ+γz).

System (4) takes the form⎧⎪⎨⎪⎩
in
ρ Hz − iγHϕ = −iωερρEρ,

iγHρ − ∂Hz
∂ρ = −iωεϕϕEϕ,

1
ρ
∂(ρHϕ)

∂ρ − in
ρ Hρ = 0,

⎧⎪⎨⎪⎩
−iγEϕ = iωμHρ,

iγEρ = iωμHϕ,
1
ρ
∂(ρEϕ)

∂ρ − in
ρ Eρ = iωμHz.

(10)
From the forth and the fifth equations of system (10) we obtain

Eϕ = −ωμ

γ
Hρ and Eρ =

ωμ

γ
Hϕ. (11)

Taking (11) into account from the first and the second equations
of system (10) we find

Hz =
1

n

(
γ − ω2μερρ

γ

)
ρHϕ and

∂Hz

∂ρ
= i

(
γ − ω2μεϕϕ

γ

)
Hρ.

(12)
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On the other hand, from the third equation of system (10) we
obtain

Hρ =
1

in

∂(ρHϕ)

∂ρ
. (13)

From formulas (12) and (13) we obtain

ω2μ

γ
(ερρ − εϕϕ)

∂(ρHϕ)

∂ρ
= ρHϕ

∂

∂ρ

(
γ − ω2μερρ

γ

)
. (14)

If ερρ does not depend on ρ, then equation (14) implies

ω2μ

γ
(ερρ − εϕϕ)

∂(ρHϕ)

∂ρ
= 0. (15)

It is easy to show that equation (15) implies the necessary
inference that

ερρ = εϕϕ.

This means that for a constant permittivity tensor and for
polarization (8) the equality ερρ = εϕϕ is always fulfilled. In other
words, for such a field the waveguide is always isotropic along axes
ρ and ϕ.

If ερρ = εϕϕ 
= const are functions with respect to |E| (the
nonlinear case!), then equation (14) implies

either ρHϕ = 0, or
∂

∂ρ

(
γ − ω2μερρ

γ

)
= 0.

The case ρHϕ = 0 implies that each component of the electro-
magnetic field vanishes.

The case ∂
∂ρ

(
γ − ω2μερρ

γ

)
= 0 implies that ερρ does not depend

on ρ. This contradicts the initial assumption.
All this means that in a nonlinear waveguide (isotropic along

axes ρ, ϕ) there are no nonlinear eigenmodes with polarization (8)!
It should be noticed that in a linear waveguide there are eigenmodes
for polarization (8).
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Now, let us consider polarized waves (9), where the components
have the form

Eρ = Eρ(ρ)e
i(nϕ+γz), Eϕ = Eϕ(ρ)e

i(nϕ+γz), Ez = Ez(ρ)e
i(nϕ+γz),

Hρ = Hρ(ρ)e
i(nϕ+γz), Hϕ = Hϕ(ρ)e

i(nϕ+γz), Hz = 0.

System (4) takes the form⎧⎪⎨⎪⎩
−iγHϕ = −iωερρEρ,

iγHρ = −iωεϕϕEϕ,
1
ρ
∂(ρHϕ)

∂ρ − in
ρ Hρ = −iωεzzEz,

⎧⎪⎨⎪⎩
in
ρ Ez − iγEϕ = iωμHρ,

iγEρ − ∂Ez
∂ρ = iωμHϕ,

1
ρ
∂(ρEϕ)

∂ρ − in
ρ Eρ = 0.

(16)
From the first and the second equations of system (10) we obtain

Hϕ =
ωερρ
γ

Eρ and Hρ = −ωεϕϕ
γ

Eϕ. (17)

Taking (17) into account from the forth and the fifth equations
of system (16) we find

Ez =
1

n

(
γ − ω2μεϕϕ

γ

)
ρEϕ and

∂Ez

∂ρ
= i

(
γ − ω2μερρ

γ

)
Eρ.

(18)
On the other hand, from the sixth equation of system (16) we

obtain
Eρ =

1

in

∂(ρEϕ)

∂ρ
. (19)

From formulas (18) and (19) we obtain

ω2μ

γ
(εϕϕ − ερρ)

∂(ρEϕ)

∂ρ
= ρEϕ

∂

∂ρ

(
γ − ω2μεϕϕ

γ

)
. (20)

If εϕϕ does not depend on ρ, then equation (20) implies

ω2μ

γ
(εϕϕ − ερρ)

∂(ρHϕ)

∂ρ
= 0. (21)

It is easy to show that equation (21) implies the necessary
inference that

ερρ = εϕϕ.
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This means that for a constant permittivity tensor and for
polarization (9) the equality ερρ = εϕϕ is always executed. In other
words, for such a field the waveguide is always isotropic along axes
ρ and ϕ.

If ερρ = εϕϕ 
= const are functions with respect to |E| (the
nonlinear case!), then equation (20) implies

either ρEϕ = 0 or
∂

∂ρ

(
γ − ω2μεϕϕ

γ

)
= 0.

The case ρEϕ = 0 implies that each component of the electro-
magnetic field vanishes.

The case ∂
∂ρ

(
γ − ω2μεϕϕ

γ

)
= 0 implies that εϕϕ does not depend

on ρ. This contradicts the initial assumption.
All this means that in a nonlinear waveguide (isotropic along

axes ρ, ϕ) there are no nonlinear eigenmodes with polarization (9)!
It should be noticed that in a linear waveguide there are eigenmodes
for polarization (9).

Further we study only polarized waves (6) and (7) for nonlinear
waveguides.
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TE WAVE PROPAGATION
IN A LINEAR CIRCLE CYLINDRICAL WAVEGUIDE

§1. Statement of the Problem

Let us consider three-dimensional space R
3 with Cartesian co-

ordinate system Oxyz. The space is filled by isotropic medium with
constant permittivity ε ≥ ε0, where ε0 is the permittivity of free
space. In this medium a circle cylindrical waveguide is placed. The
waveguide is filled by anisotropic nonmagnetic medium. The wave-
guide has cross section W :=

{
(x, y) : x2 + y2 < R2

}
and its gen-

erating line (the waveguide axis) is parallel to the axis Oz. We
shall consider electromagnetic waves propagating along the wave-
guide axis, that is eigenmodes of the structure.

Let us consider also cylindrical coordinate system Oρϕz. Axis
Oz of cylindrical coordinate system coincides with axis Oz of Car-
tesian coordinate system.

The electromagnetic field depends on time harmonically [17]

Ẽ (ρ, ϕ, z, t) = E+ (ρ, ϕ, z) cosωt+E− (ρ, ϕ, z) sinωt,

H̃ (ρ, ϕ, z, t) = H+ (ρ, ϕ, z) cosωt+H− (ρ, ϕ, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Eρ, Eϕ, Ez)

T , H = (Hρ,Hϕ,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields is a function of three spatial variables.
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential components on the media
interfaces (on the boundary of the waveguide) and the radiation
condition at infinity: the electromagnetic field exponentially decays
as ρ → ∞.

The permittivity inside the waveguide is the constant ε = ε2.
The solutions to the Maxwell equations are sought in the entire

space.

§2. TE Waves

Let us consider TE waves

E = (0, Eϕ, 0)
T , H = (Hρ, 0,Hz)

T ,

where Eϕ = Eϕ(ρ, ϕ, z), Hρ = Hρ(ρ, ϕ, z), and Hz = Hz(ρ, ϕ, z).
Substituting the fields into Maxwell equations (1) we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ρ
∂Hz
∂ϕ = 0,

∂Hρ

∂z − ∂Hz
∂ρ = −iωεEϕ,

1
ρ
∂Hρ

∂ϕ = 0,
∂Eϕ

∂z = −iωμHρ,
1
ρ
∂(ρEϕ)

∂ρ = iωμHz.

It is obvious from the first and the third equations of this system
that Hz and Hρ do not depend on ϕ. This implies that Eϕ does not
depend on ϕ.

Waves propagating along waveguide axis Oz depend on z har-
monically. This means that the fields components have the form

Eϕ = Eϕ(ρ)e
iγz ,Hρ = Hρ(ρ)e

iγz ,Hz = Hz(ρ)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).
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So we obtain from the latter system⎧⎪⎨⎪⎩
iγHρ(ρ)−H ′

z(ρ) = −iωεEϕ(ρ),

iγEϕ(ρ) = −iωμHρ(ρ),
1
ρ (ρEϕ(ρ))

′ = iωμHz(ρ),

(2)

where ( · )′ ≡ d
dρ .

Then Hz(ρ) = 1
iωμ

1
ρ (ρEϕ(ρ))

′ and Hρ(ρ) = − γ
ωμEϕ(ρ). From

the first equation of system (2) we obtain(
1

ρ
(ρEϕ(ρ))

′
)′

+
(
ω2με− γ2

)
Eϕ(ρ) = 0.

Denoting by u(ρ) := Eϕ(ρ) we obtain

u′′ +
1

ρ
u′ − 1

ρ2
u+ k2u = 0, (3)

where
k2 =

(
ω2με− γ2

)
,

and

ε =

{
ε1, ρ > R,

ε2, ρ < R.

It is necessary to find eigenvalues γ of the problem that corre-
spond to surface waves propagating along waveguide axis, i.e., the
eigenvalues corresponding to the eigenmodes of the structure. We
seek the real values of spectral parameter γ such that the nonzero
real solution u(ρ) to system (3) exists.

Note. We consider that γ is a real value, but in the linear case it
is possible to consider the spectral parameter γ as a complex value.
In nonlinear cases under our approach it is impossible to use complex
value of γ.

Also we assume that function u is sufficiently smooth

u(x) ∈ C[0,+∞) ∩C1[0, R] ∩C1 [R, +∞)∩
∩ C2(0, R) ∩ C2(R,+∞).
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Physical nature of the problem implies these conditions.
We will seek γ under conditions ε1 < γ2 < ε2. It should be

noticed that condition γ2 > ε1 holds if the value ε1 > 0. If ε1 < 0,
then γ2 > 0.

§3. Differential Equations of the Problem

In the domain ρ > R we have ε = ε1. From (3) we obtain the
equation u′′ + 1

ρu
′ − 1

ρ2
u + k21u = 0, where k21 = ω2με1 − γ2. It is

the Bessel equation and its general solution we take in the following
form u(ρ) = AH

(1)
1 (k1ρ) + +A1H

(2)
1 (k1ρ), where H

(1)
1 and H

(2)
1 are

the Hankel functions of first and second kind, respectively. Taking
into account the condition at infinity we obtain the solution

u(ρ) = AH
(1)
1 (k1ρ), (4)

where A is a constant. If Re k1 = 0, then1

u(ρ) = ÃK1(|k1|ρ), (5)

where K1(z) is Macdonald function.
In the domain ρ < R we have ε = ε2. From (3) we obtain the

equation u′′ + 1
ρu

′ − 1
ρ2
u + k22u = 0, where k22 = ω2με2 − γ2. It is

the Bessel equation and its general solution we take in the following
form u(ρ) = BJ1(k2ρ) + B1N1(k2ρ), where J1 and N1 are Bessel
and Neumann functions, respectively. The solution u(ρ) is bounded
at the point ρ = 0. This implies

u(ρ) = BJ1(k2ρ), (6)

where B is a constant. If Re k2 = 0, then1

u(ρ) = B̃I1(|k2|ρ), (7)

where I1(z) is the modified Bessel function.

1Since H
(1)
1 (iz) = −2π−1K1(z).

1Since J1(iz) = iI1(z).
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§4. Transmission Conditions

and the Dispersion Equations

Tangential components of electromagnetic field are known to be
continuous at media interfaces. In this case the tangential compo-
nents are Eϕ and Hz. Hence we obtain

Eϕ(R + 0) = Eϕ(R− 0), Hz(R+ 0) = Hz(R− 0),

where the constant ER
ϕ := u(R) = Eϕ(R + 0) is supposed to be

known (initial condition).
Further, we have Hz(ρ) =

1
iωμ

(
1
ρEϕ(ρ) + E′

ϕ(ρ)
)
. Since Eϕ(ρ)

and Hz(ρ) are continuous at ρ = R; therefore, E′
ϕ(ρ) is continuous at

the point ρ = R. These conditions imply the transmission conditions
for functions u(ρ) and u′(ρ)

[u]ρ=R, [u′]ρ=R, (8)

where [f ]x=x0 = lim
x→x0−0

f(x) − lim
x→x0+0

f(x) denotes a jump of the

function f at the interface.
Taking into account solutions (5), (6) and transmission condi-

tions (8), we obtain the dispersion equation

|k1|K ′
1(|k1|R)J1(k2R)− k2K1(|k1|R)J ′

1(k2R) = 0. (9)

Using formulas (see [7])

J ′
1(z) = J0(z)− 1

z
J1(z), K ′

1(z) = −K0(z) − 1

z
K1(z).

With the help of these formulas we obtain from (9) the disper-
sion equation in the final form

|k1|K0(|k1|R)J1(k2R) + k2K1(|k1|R)J0(k2R) = 0. (10)



C H A P T E R 11

TE WAVE PROPAGATION
IN A CIRCLE CYLINDRICAL WAVEGUIDE

WITH KERR NONLINEARITY

§1. Statement of the Problem

Let us consider three-dimensional space R
3 with Cartesian co-

ordinate system Oxyz. The space is filled by isotropic medium with
constant permittivity ε ≥ ε0, where ε0 is the permittivity of free
space. In this medium a circle cylindrical waveguide is placed. The
waveguide is filled by anisotropic nonmagnetic medium. The wave-
guide has cross section W :=

{
(x, y) : x2 + y2 < R2

}
and its gen-

erating line (the waveguide axis) is parallel to the axis Oz. We
shall consider electromagnetic waves propagating along the wave-
guide axis, that is eigenmodes of the structure.

Let us consider also cylindrical coordinate system Oρϕz. Axis
Oz of cylindrical coordinate system coincides with axis Oz of Car-
tesian coordinate system.

The electromagnetic field depends on time harmonically [17]

Ẽ (ρ, ϕ, z, t) = E+ (ρ, ϕ, z) cosωt+E− (ρ, ϕ, z) sinωt,

H̃ (ρ, ϕ, z, t) = H+ (ρ, ϕ, z) cosωt+H− (ρ, ϕ, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.
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Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Eρ, Eϕ, Ez)

T , H = (Hρ,Hϕ,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields is a function of three spatial variables.

Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential components on the media
interfaces (on the boundary of the waveguide) and the radiation
condition at infinity: the electromagnetic field exponentially decays
as ρ → ∞.

The permittivity inside the waveguide is described by Kerr law

ε = ε2 + a|E|2,

where ε2 is a constant part of the permittivity, a is the nonlinearity
coefficient. The values ε2 and a are supposed to be real constants.

It is necessary to find surface waves propagating along the wave-
guide axis.

The solutions to the Maxwell equations are sought in the entire
space.

§2. TE Waves

Let us consider TE waves

E = (0, Eϕ, 0)
T , H = (Hρ, 0,Hz)

T ,

where Eϕ = Eϕ(ρ, ϕ, z), Hρ = Hρ(ρ, ϕ, z), and Hz = Hz(ρ, ϕ, z).
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Substituting the fields into Maxwell equations (1), we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ρ
∂Hz
∂ϕ = 0,

∂Hρ

∂z − ∂Hz
∂ρ = −iωεEϕ,

1
ρ
∂Hρ

∂ϕ = 0,
∂Eϕ

∂z = −iωμHρ,
1
ρ
∂(ρEϕ)

∂ρ = iωμHz.

It is obvious from the first and the third equations of this system
that Hz and Hρ do not depend on ϕ. This implies that Eϕ does not
depend on ϕ.

Waves propagating along waveguide axis Oz depend on z har-
monically. This means that the fields components have the form

Eϕ = Eϕ(ρ)e
iγz ,Hρ = Hρ(ρ)e

iγz ,Hz = Hz(ρ)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).

So we obtain from the latter system⎧⎪⎨⎪⎩
iγHρ(ρ)−H ′

z(ρ) = −iωεEϕ(ρ),

iγEϕ(ρ) = −iωμHρ(ρ),
1
ρ (ρEϕ(ρ))

′ = iωμHz(ρ),

(2)

where ( · )′ ≡ d
dρ .

Then Hz(ρ) = 1
iωμ

1
ρ (ρEϕ(ρ))

′ and Hρ(ρ) = − γ
ωμEϕ(ρ). From

the first equation of system (2) we obtain(
1

ρ
(ρEϕ(ρ))

′
)′

+
(
ω2με− γ2

)
Eϕ(ρ) = 0.

Denoting by u(ρ) := Eϕ(ρ) we obtain

u′′ +
1

ρ
u′ − 1

ρ2
u+

(
ω2με− γ2

)
u = 0, (3)

and

ε =

{
ε1, ρ > R,

ε2 + au2, ρ < R.
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It is necessary to find eigenvalues γ of the problem that corre-
spond to surface waves propagating along waveguide axis, i.e., the
eigenvalues corresponding to the eigenmodes of the structure. We
seek the real values of spectral parameter γ such that the nonzero
real solution u(ρ) to system (3) exists.

Also we assume that function u is sufficiently smooth

u(x) ∈ C[0,+∞) ∩ C1[0,+∞) ∩ C2(0, R) ∩ C2(R,+∞).

Physical nature of the problem implies these conditions.
We will seek γ under conditions ε1 < γ2 < ε2. It should be

noticed that condition γ2 > ε1 holds if the value ε1 > 0. If ε1 < 0,
then γ2 > 0.

§3. Differential Equations of the Problem.

Transmission Conditions

In the domain ρ > R we have ε = ε1. From (3) we obtain the
equation

u′′ +
1

ρ
u′ − 1

ρ2
u+ k21u = 0, (4)

where k21 = ω2με1 − γ2. It is the Bessel equation.
In the domain ρ < R we have ε = ε2 + au2. From (3) we obtain

the equation

u′′ +
1

ρ
u′ − 1

ρ2
u+ k22u+ αu3 = 0, (5)

where k22 = ω2με2 − γ2, α = aω2μ. It is the nonlinear equation and
its solution is unknown.

Tangential components of electromagnetic field are known to be
continuous at media interfaces. In this case the tangential compo-
nents are Eϕ and Hz. Hence we obtain

Eϕ(R + 0) = Eϕ(R− 0), Hz(R+ 0) = Hz(R− 0),

where the constant ER
ϕ := u(R) = Eϕ(R + 0) is supposed to be

known (initial condition).
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Further, we have Hz(ρ) =
1

iωμ

(
1
ρEϕ(ρ) + E′

ϕ(ρ)
)
. Since Eϕ(ρ)

and Hz(ρ) are continuous at the point ρ = R; therefore, E′
ϕ(ρ)

is continuous at ρ = R. These conditions imply the transmission
conditions for functions u(ρ) and u′(ρ)

[u]ρ=R = 0, [u′]ρ=R = 0, (6)

where [f ]x=x0 = lim
x→x0−0

f(x) − lim
x→x0+0

f(x) denotes a jump of the

function f at the interface.
Let us formulate the transmission problem (the problem P). It

is necessary to find eigenvalues γ and corresponding to them nonzero
eigenfunctions u(ρ) such that u(ρ) satisfy to equations
(4)–(5); transmission conditions (6) and the radiation condition at
infinity: eigenfunctions exponentially decay as ρ → ∞.

The general solution of equation (4) we take in the following
form u(ρ) = CH

(1)
1 (k1ρ) + C1H

(2)
1 (k1ρ), where H

(1)
1 and H

(2)
1 are

the Hankel functions of the first and the second kind, respectively.
In accordance with the radiation condition we obtain the solu-

tion
u(ρ) = C1H

(1)
1 (k1ρ), ρ > R, (7)

where C1 is a constant. If Re k1 = 0, then1

u(ρ) = C̃1K1(|k1|ρ), ρ > R, (8)

where K1(z) is the Macdonald function. The radiation condition is
fulfilled since K1(|k1|ρ) → 0 as ρ → ∞.

By u(R+0) := E0 denote the field on the waveguide boundary.
From formulas (7), (8) we obtain

u(ρ) = E0
H

(1)
1 (k1ρ)

H
(1)
1 (k1R)

(8∗)

and
u(ρ) = E0

K1(|k1|ρ)
K1(|k1|R)

. (9∗)

1Since H
(1)
1 (iz) = − 2

π
K1(z).
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§4. Nonlinear Integral Equation

and Dispersion Equation

Consider nonlinear equation (5) written in the form

ρu′′ + u′ +
(
k22ρ−

1

ρ

)
u+ αρu3 = 0, (9)

and the linear Bessel equation

ρu′′ + u′ +
(
k22ρ−

1

ρ

)
u = 0. (10)

This equation can be written in the operator form as

Lu = 0, L = ρ
d2

dρ2
+

d

dρ
+

(
k22ρ−

1

ρ

)
. (11)

Let us consider the boundary problem for equation (10) with
conditions (6). Construct the Green function G for the boundary
value problem

LG = −δ (ρ− s) , G |ρ=0 = G′ |ρ=R = 0 (0 < s < R) (12)

in the form1 (see, e.g., [82])

G(ρ, s) =

=

⎧⎨⎩
π
2J1(k2ρ)

J1(k2s)N ′
1(k2R)−J ′

1(k2R)N1(k2s)
J ′
1(k2R) , ρ < s ≤ R,

π
2J1(k2s)

J1(k2ρ)N ′
1(k2R)−J ′

1(k2R)N1(k2ρ)
J ′
1(k2R)

, s < ρ ≤ R.
(13)

The Green function exists if J ′
1(k2R) 
= 0.

Let us write equation (9) in the operator form

Lu+ αρu3 = 0. (14)

1Linearly independent solutions of the equation Lu = 0 satisfying the condi-
tions u|ρ=0 = u′|ρ=R = 0 are u1 = J1(k2ρ) and u2 = N ′

1(k2R)J1(k2ρ) −
J ′
1(k2R)N1(k2ρ).
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Using the second Green formula

R∫
0

(vLu− uLv)dρ =

R∫
0

(
v
(
ρu′
)′ − u

(
ρv′
)′)

dρ =

= R
(
u′(R)v(R) − v′(R)u(R)

)
(15)

and assuming that v = G, we obtain

R∫
0

(GLu− uLG)dρ =

= R
(
u′(R− 0)G(R, s) −G′(R, s)u(R− 0)

)
=

= Ru′(R− 0)G(R, s), (16)

since it is clear from (13) that G′(R, s) = 0.
From (12) we obtain

R∫
0

uLGdρ = −
R∫
0

u(ρ)δ(ρ − s)dρ = −u(s).

Further, using formula (14), we obtain

R∫
0

GLudρ = −α

R∫
0

G(ρ, s)ρu3(ρ)dρ.

Taking into account these results and formula (16), we obtain
the nonlinear integral equation with respect to u(s) (u(ρ) is a solu-
tion of equation (5)) on interval (0, R)

u(s) = α

R∫
0

G(ρ, s)ρu3(ρ)dρ +Ru′(R− 0)G(R, s), 0 ≤ s ≤ R.

(17)
It is easy to see that G(R, s) = 1

k2R
J1(k2s)
J ′
1(k2R) (Wronskian of the

Bessel and the Neumann functions proves this formula). Taking into
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account this result and using transmission conditions (6) we obtain
from equation (17)

u(s) = α

R∫
0

G(ρ, s)ρu3(ρ)dρ+ u′(R+ 0)
1

k2

J1(k2s)

J ′
1(k2R)

,

0 ≤ s ≤ R. (18)

Using (9∗) and denoting by f(s) := E0
|k1|
k2

K ′
1(|k1|R)J1(k2s)

K1(|k1|R)J ′
1(k2R)

we
can rewrite equation (18) in the final form

u(s) = α

R∫
0

G(ρ, s)ρu3(ρ)dρ+ f(s), 0 ≤ s ≤ R. (19)

Using equation (19) and transmission conditions (6), we obtain
the dispersion equation with respect to the propagation constants

u(R + 0) = α

R∫
0

G(ρ,R)ρu3(ρ)dρ+ f(R).

Applying formula (9∗) we obtain the DE in the following form

E0 = α

R∫
0

G(ρ,R)ρu3(ρ)dρ+ f(R). (20)

Let us denote by N(ρ, s) := αG(ρ, s)ρ and consider the integral
equation (19)

u(s) =

R∫
0

N(ρ, s)u3(ρ)dρ+ f(s). (21)

in C[0, R] [67]. It is assumed that f ∈ C[0, R] and J ′
1(k2R) 
= 0.

It is not difficult to see that the kernel N(ρ, s) is continuous in the
square 0 ≤ ρ, s ≤ R.
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Let us consider the linear integral operator

Nω =

R∫
0

N(ρ, s)ω(ρ)dρ (22)

in C[0, R]. It is bounded, completely continuous, and satisfies the
condition

‖N‖ = max
s∈[0,R]

R∫
0

|N(ρ, s)|dρ. (23)

Since the nonlinear operator B(u) = u3(ρ) is bounded and con-
tinuous in C[0, R]; therefore, the nonlinear operator

F (u) =

R∫
0

N(ρ, s)u3(ρ)dρ+ f(s) (24)

is completely continuous in any bounded set in C[0, R].
In the subsequent reasoning, we need the following auxiliary

number cubic equation

‖N‖ r3 + ‖f‖ = r, (25)

where the norm ‖N‖ > 0 of the operator is defined by formula (23)
and

‖f‖ = max
s∈[0,R]

|f(s)|. (26)

Consider the equation

r − ‖N‖ r3 = ‖f‖ (27)

and the function
y(r) := r − ‖N‖ r3. (28)

The function y(r) has only one positive maximum point

rmax =
1√

3 ‖N‖ (29)
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such that the value of the function at this point is

ymax = y (rmax) =
2

3
√

3 ‖N‖ . (30)

Then, if 0 ≤ ‖f‖ ≤ 2

3
√

3‖N‖ equation (27) has two nonnegative

roots r∗ and r∗, r∗ ≤ r∗, which satisfy the inequalities

0 ≤ r∗ ≤ 1√
3 ‖N‖ ,

1√
3 ‖N‖ ≤ r∗ ≤ 1√‖N‖ . (31)

These roots are easily found as solutions of the cubic equation

r3 − 1√‖N‖r +
‖f‖
‖N‖ = 0. (32)

According to [28], we have

r∗ = − 2√
3 ‖N‖ cos

⎛⎝arccos
(
3
√
3

2 ‖f‖√‖N‖
)

3
− 2π

3

⎞⎠ , (33)

r∗ = − 2√
3 ‖N‖ cos

⎛⎝arccos
(
3
√
3

2 ‖f‖√‖N‖
)

3
+

2π

3

⎞⎠ . (34)

If ‖f‖ = 0, then r∗ = 0 and r∗ = 1√
‖N‖ . If 0 < ‖f‖ < 2

3
√

3‖N‖ ,

then r∗ < 1√
3‖N‖ . For ‖f‖ = 2

3
1√
3‖N‖ we have r∗ = r∗ = 1√

3‖N‖ .

Thus we proved the following assertion.
Lemma 1. If

0 ≤ ‖f‖ <
2

3
√

3 ‖N‖ , (35)

then equation (25) has two nonnegative solutions r∗, r∗; r∗ < r∗.
Using the Schauder principle [67, 83], it can be shown that, for

any f ∈ Sr̃(0) ⊂ C[0, R], where r̃ = 2

3
√

3‖N‖ , there exists a solution

u(ρ) to equation (19) in the ball S∗ = Sr∗(0).
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Lemma 2. If ‖f‖ ≤ 2

3
√

3‖N‖ , then equation (19) has at least

one solution u(ρ) such that ‖u‖ ≤ r∗.
Proof. Since F (u) is absolutely continuous, it is required only

to verify whether F maps the ball S∗ into itself. Suppose that u ∈ S∗.
Using (22)–(24), we obtain

‖F (u)‖ ≤ ‖N‖ · ‖u‖3 + ‖f‖ ≤ ‖N‖ (r∗)3 + ‖f‖ = r∗.

This implies that FS∗ ⊂ S∗. The lemma is proved.
Now we prove that, if condition (27) holds, then equation (19)

has a unique solution u in the ball S∗ = Sr∗.
Theorem 1. If α ≤ A2, where

A =
2

3

1

‖f‖√3 ‖N0‖
(36)

and

‖N0‖ = max
s∈[0,R]

R∫
0

|ρG(ρ, s)| dρ,

then equation (19) has a unique continuous solution u ∈ C[0, R]
such that ‖u‖ ≤ r∗.

Proof. If u ∈ S∗, then

‖F (u)‖ ≤ ‖N‖ · ‖u‖3 + ‖f‖ ≤ ‖N‖ (r∗)3 + ‖f‖ = r∗.

If u1, u2 ∈ S∗, then

‖F (u1)− F (u2)‖ =

∥∥∥∥∥∥
R∫
0

N(ρ, s)
(
u31(ρ)− u32(ρ)

)
dρ

∥∥∥∥∥∥ ≤
≤ 3 ‖N‖ r2∗ ‖u1 − u2‖ .

Since α ≤ A2, f(s) satisfies condition (35). Hence inequality
r∗ < 1√

3‖N‖ holds. Then, it follows that 3 ‖N‖ r2∗ < 1.

Hence F maps S∗ into itself and F is a contracting operator
on S∗. Therefore equation (19) has a unique solution in S∗. The
theorem is proved.
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Note that A > 0 does not depend on α.

In what follows, we need the following assertion about the de-
pendence of the solutions of the integral equation (19) on the pa-
rameter.

Theorem 2. Let the kernel N and the right-hand side f
of equation (19) depend continuously on the parameter λ ∈ Λ0,
N(λ, ρ, s) ⊂ C (Λ0 × [0, R]× [0, R]), f(λ, s) ⊂ C (Λ0 × [0, R]) on
some segment Λ0 of the real number axis. Let also

0 < ‖f(λ)‖ <
2

3
√

3 ‖N(λ)‖ . (37)

Then, for λ ∈ Λ0, a unique solution u(λ, ρ) of equation (19)
exists and depends continuously on λ, u(λ, ρ) ⊂ C (Λ0 × [0, R]).

Proof. Consider the equation

u(s, λ) =

R∫
0

N(λ, ρ, s)u3(ρ, λ)dρ+ f(s, λ). (38)

Under the assumptions of the theorem, the existence and unique-
ness of solutions u(λ) follow from Theorem 1.

Let us prove that these solutions depend continuously on the
parameter λ.

From (33) it immediately follows that r∗(λ) depends continu-
ously on λ in the segment Λ0. Let r0 = max

λ∈Λ0

r∗(λ) and the maximum

be achieved at the point λ0, r∗(λ) = r0.

Furthermore, let Q = max
λ∈Λ0

(
3r2∗(λ) ‖N(λ)‖) and the maximum

be achieved at the point λ̃ ∈ Λ0, Q = 3r2∗(λ̃)
∥∥∥N(λ̃)

∥∥∥. Then, Q < 1

by virtue of assumption (37).
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First, let us assume that ‖u(λ)‖ ≥ ‖u(λ+Δλ)‖. Then, the
following inequalities are valid

|u(s, λ+Δλ)− u(s, λ)| =

=

∣∣∣∣∣∣
R∫
0

N(λ+Δλ, ρ, s)u3(ρ, λ+Δλ)dρ−

−
R∫
0

N(λ, ρ, s)u3(ρ, λ)dρ+ (f(s, λ+Δλ)− f(s, λ))

∣∣∣∣∣∣ ≤
≤

R∫
0

|N(λ+Δλ, ρ, s)−N(λ, ρ, s)| · |u(ρ, λ+Δλ)|3 dρ+

+

R∫
0

|N(λ, ρ, s)| · ∣∣u3(ρ, λ+Δλ)− u3(ρ, λ)
∣∣ dρ+

+ |f(s, λ+Δλ)− f(s, λ)| ≤

≤ ‖u(λ+Δλ)‖3
R∫
0

|N(λ+Δλ, ρ, s)−N(λ, ρ, s)| dρ+

+ ‖u(λ+Δλ)− u(λ)‖×
×
(
‖u(λ+Δλ)‖2 + ‖u(λ+Δλ)‖ · ‖u(λ)‖+ ‖u(λ)‖2

)
×

×
R∫
0

|N(λ, ρ, s)| dρ+ ‖f(λ+Δλ)− f(λ)‖ ≤

≤ r30 ‖N(λ+Δλ)−N(λ)‖+
+ ‖u(λ+Δλ)− u(λ)‖ 3r2∗(λ) ‖N(λ)‖+ ‖f(λ+Δλ)− f(λ)‖ .
Then, it follows that

‖u(λ+Δλ)− u(λ)‖ ≤

≤ r30 ‖N(λ+Δλ)−N(λ)‖+ ‖f(λ+Δλ)− f(λ)‖
1− 3r2∗(λ) ‖N(λ)‖ ,
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and

‖u(λ+Δλ)− u(λ)‖ ≤

≤ r30 ‖N(λ+Δλ)−N(λ)‖+ ‖f(λ+Δλ)− f(λ)‖
1−Q

, (39)

where Q and r0 do not depend on λ.
Now, let ‖u(λ)‖ < ‖u(λ+Δλ)‖. Then, all the preceding esti-

mates remain valid if we replace λ by λ + Δλ, and λ + Δλ by λ.
Thus, estimate (39) also remains valid, which proves the theorem.

§5. Iteration Method

Approximate solutions un of integral equation (19) represented
in the form u = F (u) can be found by means of the iteration process
un+1 = F (un), n = 0, 1, ...,

u0 = 0, un+1 = α

R∫
0

G(ρ, s)ρu3ndρ+ f, n = 0, 1, ... (40)

The sequence un converges uniformly to the solution u of equa-
tion (19) by virtue of the fact that F (u) is a contracting operator.
The estimate of the convergence rate of iteration process (40) is also
known. Let us formulate these results as the following proposition.

Proposition 1. The sequence of approximate solutions un
of equation (19), obtained by means of iteration process (40)
converges in the norm of the space C[0, R] to the (unique) exact
solution u of this equation. The following estimate of the conver-
gence rate is valid

‖un − u‖ ≤ qn

1− q
f(u0), n → ∞, (41)

where
q := 3Nr2∗ < 1

is the coefficient of contraction of the mapping F .
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§6. Theorem of Existence

Let us introduce the following dimensionless variables and pa-
rameters:1 ρ̃ = k0ρ, z̃ = k0z, R̃ = k0R, ε̃ = ε/ε0, μ̃ = μ/μ0 = 1,
k̃2 =

√
ε̃2 − γ̃2, k1 =

√
γ̃2 − ε̃1 (ε̃2 > ε̃1), γ̃ = γ/k0, α̃ = αC̃2

1/ε0,
ũ = u/C̃1, and k0 = ω̃2ε0μ̃0. Omitting the tilde and taking into
account formulas

J ′
1(k2R) = J0(k2R)− (k2R)−1J1(k2R),

K ′
1(|k1|R) = −K0(|k1|R)− (k1R)−1K1(|k1|R),

we represent dispersion equation (20) in the normalized form

g(R, γ2) = αF (R, γ2;u3), (42)

where

g(R, γ2) = k2RJ0(k2R)K1(|k1|R) + |k1|RJ1(k2R)K0(|k1|R),

F (R, γ2;u3) = K1(|k1|R)

R∫
0

J1(k2ρ)ρu
3(ρ, γ2)dρ.

The zeros of the function Φ(γ) ≡ g(γ)−αF (γ) are those values
of γ for which there exists a nontrivial solution of the problem P
stated above. The following assertion gives us sufficient conditions
for the existence of zeros of the function Φ.

Let j0m be the m-th positive root of the Bessel function J0; j1m
be the m-th positive root of the Bessel function J1; j′1m be the m-th
positive root of the Bessel function J ′

1; where m = 1, 2, ...

Then, we have

j′11 = 1.841, ..., j01 = 2.405, ..., j11 = 3.832, ...,

j′12 = 5.331, ..., j02 = 5.520, ..., j12 = 7.016, ...,

j′13 = 8.536, ..., j03 = 8.654, ..., j13 = 10.173, ...,

j′14 = 11.706, ..., j04 = 11.792, ..., j14 = 13.324, ...

1This problem depends on the initial condition E0, see the note on p. 49.
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Let us introduce the notation

λ1m = ε2 − j21m/R2; λ2m = ε2 − j20m/R2, m = 1, 2, . . . ;

and Λi = [λ1i, λ2i], Λ =
m⋃
i=1

Λi.

Theorem 3. Suppose that ε2 > ε1 > 0, 0 < α ≤ α0, where

α0 = min

⎛⎜⎜⎜⎝min
λ∈Λ

A(λ),

min
1≤l≤2, 1≤i≤m

|g(λli)|

0.3 ·R2

(
max
λ∈Λ

r∗(λ)
)3

⎞⎟⎟⎟⎠ , (43)

and let the condition
λ1m > ε1 (44)

hold for m ≥ 1. Then, there exist at least m values γi, i = 1,m
such that the problem P has a nonzero solution.

Proof. Let λ = γ2 and ‖u‖ ≤ r∗ = r∗(λ).
Since j′1i /∈ Λ for i = 1, 2, 3, 4, Green function (13) exists for γ2 ∈

Λ. From (36) and the properties of the Green function, it follows that
A2 = A2(λ) is a continuous function on λ in the interval Λ, λ ∈ Λ.
Let A2

0 = min
λ∈Λ

A2(λ) and α ≤ A2
0. According to Theorem 1, there

exists a unique continuous solution u = u(λ) to equation (14) for any
λ ∈ Λ such that this solution is continuous and ‖u‖ ≤ r∗ = r∗(λ).
Let r0 = max

λ∈Λ
r∗(λ). Since |J1(x)| ≤ 0.6 for nonnegative x, using the

simplest estimate for integral F (λ), we find that |F (λ)| ≤ 0.3 ·R2r30.
In view of the properties of the Macdonald functions, K0(x)

and K1(x) are positive for positive x. The function g(λ) is also con-
tinuous with respect to λ, and g(λ1i), g(λ2i) < 0, i = 1, ..., m.
Thus, the equation g(λ) = 0 has a root λ0i in the interval Λi,
λ1i < λ0i < λ2i.

Let us introduce the notation

M1 := min
1≤i≤m

|g(λ1i)| , M2 := min
1≤i≤m

|g(λ2i)| , M := min{M1,M2};

M > 0 does not depend on α.
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If α ≤ M
0.3·R2r30

, then

(g (λ1i)− αF (λ1i)) (g (λ2i)− αF (λ2i)) < 0.

Since the function g(λ)−αF (λ) is also continuous, the equation
g(λ)−αF (λ) = 0 has a root λi in the interval Λi, i.e. λ1i < λi < λ2i.
We can select α0 such that α0 = min

{
A2

0,
M

0.3·R2r30

}
. The theorem

is proved.
From Theorem 3 it follows that, under the above assumptions,

there exist axially symmetrical propagating TE waves in cylindrical
dielectric waveguides of circular cross-section filled with a nonmag-
netic isotropic medium with Kerr nonlinearity. This result general-
izes the well-known similar statement for dielectric waveguides of
circular cross-section filled with a linear medium (i.e., α = 0).

§7. Numerical Method

We present the numerical method for finding approximate solu-
tions. In practise, as a rule, the propagation constants of the guiding
system, i.e., the eigenvalues γ (or λ) for which there exist nontrivial
solutions to the boundary value problem P , are of interest. Answers
to the questions of the existence and localization of the eigenvalues γ
are given in Theorem 3. Let us discuss the method for approximately
finding the eigenvalues γ.

Let eigenvalues γ be sought in the interval [A1, A2] (this interval
can be selected based on the results of Theorem 3 or from practical
considerations). Let us introduce a grid in this interval with the
nodes γ(j) = A1 + j(A2 − A1)/N , j = 0, ..., N , where N satisfies
the condition A2 − A1 < Nδ and δ is the desired accuracy of the
eigenvalues γ. The values of the function Φ are computed at the
nodes γ(j) by solving the integral equation (19) for each γ(j) by
means of iteration algorithm (40) with the desired accuracy. Next,
it is determined whether there is the signs’ reversal in the sequence of
numbers Φ

(
γ(j)
)
. If Φ

(
γ(j)
)
Φ
(
γ(j+1)

)
< 0, then we approximately

set γ =
(
γ(j) + γ(j+1)

)
/2.
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TM WAVE PROPAGATION
IN A LINEAR CIRCLE CYLINDRICAL WAVEGUIDE

§1. Statement of the Problem

Let us consider three-dimensional space R
3 with Cartesian co-

ordinate system Oxyz. The space is filled by isotropic medium with
constant permittivity ε ≥ ε0, where ε0 is the permittivity of free
space. In this medium a circle cylindrical waveguide is placed. The
waveguide is filled by anisotropic nonmagnetic medium. The wave-
guide has cross section W :=

{
(x, y) : x2 + y2 < R2

}
and its gen-

erating line (the waveguide axis) is parallel to the axis Oz. We
shall consider electromagnetic waves propagating along the wave-
guide axis, that is eigenmodes of the structure.

Let us consider also cylindrical coordinate system Oρϕz. Axis
Oz of cylindrical coordinate system coincides with axis Oz of Car-
tesian coordinate system.

Electromagnetic field depends on time harmonically [17]

Ẽ (ρ, ϕ, z, t) = E+ (ρ, ϕ, z) cosωt+E− (ρ, ϕ, z) sinωt,

H̃ (ρ, ϕ, z, t) = H+ (ρ, ϕ, z) cosωt+H− (ρ, ϕ, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of the electromagnetic field

E = E+ + iE−,
H = H+ + iH−,

where
E = (Eρ, Eϕ, Ez)

T , H = (Hρ,Hϕ,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields is a function of three spatial variables.
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential components on the media
interfaces (on the boundary of the waveguide) and the radiation
condition at infinity: the electromagnetic field exponentially decays
as ρ → ∞.

The permittivity inside the waveguide is described by the di-
agonal tensor

ε̃ =

⎛⎝ ερρ 0 0
0 εϕϕ 0
0 0 εzz

⎞⎠ ,

where ερρ, εzz are constants. For TM wave it does not matter what
form εϕϕ has, as it is not contained in the equations below.

The solutions to the Maxwell equations are sought in the entire
space.

§2. TM Waves

Let us consider TM waves

E = (Eρ, 0, Ez)
T , H = (0,Hϕ, 0)

T ,

where Eρ = Eρ(ρ, ϕ, z), Ez = Ez(ρ, ϕ, z), and Hϕ = Hϕ(ρ, ϕ, z).
Substituting the fields into Maxwell equations (1) we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Hϕ

∂z = iωερρEρ,
1
ρ
∂(ρHϕ)

∂ρ = −iωεzzEz,
1
ρ
∂Ez
∂ϕ = 0,

∂Eρ

∂z − ∂Ez
∂ρ = iωμHϕ,

1
ρ
∂Eρ

∂ϕ = 0.

It is obvious from the third and the fifth equations of this system
that Ez and Eρ do not depend on ϕ. This implies that Hϕ does not
depend on ϕ.
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Waves propagating along waveguide axis Oz depend on z har-
monically. This means that the fields components have the form

Eρ = Eρ(ρ)e
iγz , Ez = Ez(ρ)e

iγz ,Hϕ = Hϕ(ρ)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).

So we obtain from the latter system⎧⎪⎨⎪⎩
γHϕ = ωερρEρ,
1
ρ(ρHϕ)

′ = −iωεzzEz,

iγEρ − E′
z = iωμHϕ,

(2)

where ( · )′ ≡ d
dρ .

Using the third equation of system (2) it is easy to find that
Hϕ(ρ) =

1
iωμ (iγEρ(ρ)− E′

z(ρ)). And system (2) implies{
γ
ωμ (γEρ(ρ) + (iEz)

′(ρ)) = ωερρEρ(ρ),
1
ωμ

1
ρ (γρEρ(ρ) + ρ(iEz)

′(ρ))′ = −ωεzz(iEz).

It is convenient to suppose that ερρ = ε0ερ and εzz = ε0εz,
where ε0 is the permittivity of free space.

Denoting by u1(ρ) := Eρ(ρ), u2(ρ) := iEz(ρ) and k20 := ω2με0,
from the latter system we obtain (we omit the independent variable
if it does not confuse){

γ2u1 + γu′2 = k20ερu1,
γ
ρ (ρu1)

′ + 1
ρ (ρu

′
2)

′ = −k20εzu2.

From the first equation we find u1 =
γ

k20ερ−γ2u
′
2. Then, from the

second equation we obtain 1
ρ (ρu

′
2)

′ + εz
ερ

(
k20ερ − γ2

)
u2 = 0.

Thus inside the waveguide the functions u1 and u2 are defined
from the system {

u1 =
γ
k2ρ
u′2,

1
ρ (ρu

′
2)

′ + εz
ερ
k2ρu2 = 0,

(3)

where k2ρ = k20ερ − γ2.
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It is clear that outside the waveguide the functions u1 and u2
are defined from system (3), where εzz = ερρ = ε1{

u1 = − γ
k21
u′2,

1
ρ (ρu

′
2)

′ − k21u2 = 0,
(4)

where k21 = γ2 − k20ε1.
The second equations of system (3) and (4) the Bessel equations.
It is necessary to find eigenvalues γ of the problem that corre-

spond to surface waves propagating along waveguide axis, i.e., the
eigenvalues corresponding to the eigenmodes of the structure. We
seek the real values of spectral parameter γ, such that the nonzero
real solutions u1(ρ) and u2(ρ) to systems (3) and (4) exist.

Note. We consider that γ is a real value, but in the linear case
it is possible to consider this spectral parameter γ as a complex
value. In nonlinear cases under our approach it is impossible to use
complex value of γ.

Also we assume that functions u1 and u2 are sufficiently smooth

u1(x) ∈ C[0, R] ∩ C [R , +∞) ∩ C1[0, R] ∩ C1 [R, +∞) ,

u2(x) ∈ C [0 , +∞) ∩ C1[0, R] ∩ C1 [R, +∞)∩
∩ C2(0, R) ∩ C2(R,+∞).

Physical nature of the problem implies these conditions.
We seek γ under conditions ε1 < γ2 < ε2. It should be noticed

that condition γ2 > ε1 holds if the value ε1 > 0. If ε1 < 0, then
γ2 > 0.

§3. Differential Equations of the Problem

In the domain ρ < R we write the solutions of system (3) in the
following form [39]{

u1(ρ) =
γ
k2ρ

√
β
(
C1J

′
0

(√
βρ
)
+ C2N

′
0

(√
βρ
))

,

u2(ρ) = C1J0
(√

βρ
)
+ C2N0

(√
βρ
)
,

where β = εz
ερ
k2ρ.
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The functions J0 and N0 are the Bessel and the Neumann func-
tions of zero-orders, respectively. The Neumann function N0(ρ) has
a singularity at the point ρ = 0. On the other hand, it is clear that
the field intensity is bounded inside the waveguide. Taking this and
formula J ′

0(z) = −J1(z) [21] into account we obtain{
u1(ρ) = − γ

k2ρ

√
βC1J1

(√
βρ
)
,

u2(ρ) = C1J0
(√

βρ
)
,

(5)

where β = εz
ερ
k2ρ.

In the domain ρ > R we write the solutions of system (4) in the
following form [39]{

u1(ρ) = − γ
k1

(C3I
′
0(k1ρ) + C4K

′
0(k1ρ)) ,

u2(ρ) = C3I0(k1ρ) + C4K0(k1ρ).

The functions I0 and K0 are the modified Bessel functions (the
Bessel functions of imaginary argument). The function I0(ρ) tends
to infinity as ρ → +∞, and the function K0(ρ) tends to zero as
ρ → +∞. Taking the formula K ′

0(z) = −K1(z) [21] into account we
obtain {

u1(ρ) =
γ
k1
C4K1(k1ρ),

u2(ρ) = C4K0(k1ρ).
(6)

§4. Transmission Conditions

and Dispersion Equation

Tangential components of electromagnetic field are known to be
continuous at media interfaces. In this case the tangential compo-
nents are Ez and Eϕ Hence we obtain

Ez(R+ 0) = Ez(R− 0), Hϕ(R+ 0) = Hϕ(R− 0),

where the constant ER
z := u2(R) = Ez(R + 0) is supposed to be

known (initial condition).
It is well known that a normal component of an electromag-

netic field has a jump at the medium interface. In this case the
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normal component is Eρ. It is also well known that the value εEρ is
continuous at the medium interface. From all above we obtain the
transmission conditions for the functions u1 and u2

[ε̃u1]ρ=R = 0, [u2]ρ=R = 0, (7)

where [f ]x=x0 = lim
x→x0−0

f(x)− lim
x→x0+0

f(x) denotes a finite jump of

the function f at the interface, ε̃ = ε1 when ρ > R, and ε̃ = εz when
ρ < R.

Taking into account solutions (5), (6) and transmission condi-
tions (7), we obtain the dispersion equation

εzk1J1

(√
βR
)
K0(k1R) + ε1

√
βJ0

(√
βR
)
K1(k1R) = 0, (8)

where β = εz
ερ
k2ρ, k2ρ = k20ερ − γ2, k21 = γ2 − k20ε1, and k20 = ω2με0.

It should be noticed that equation (8) can be used to study
metamaterials.

In the case of isotropic waveguide, i.e. when ε2 := ερ = εz and
k22 := k2ρ = k20ε2 − γ2 we obtain the well-known dispersion equation
(see [64])

ε2k1J1 (k2R)K0(k1R) + ε1k2J0 (k2R)K1(k1R) = 0. (9)
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TM WAVE PROPAGATION
IN A CIRCLE CYLINDRICAL WAVEGUIDE

WITH KERR NONLINEARITY

§1. Statement of the Problem

Let us consider three-dimensional space R
3 with Cartesian co-

ordinate system Oxyz. The space is filled by isotropic medium with
constant permittivity ε ≥ ε0, where ε0 is the permittivity of free
space. In this medium a circle cylindrical waveguide is placed. The
waveguide is filled by anisotropic nonmagnetic medium. The wave-
guide has cross section W :=

{
(x, y) : x2 + y2 < R2

}
and its gen-

erating line (the waveguide axis) is parallel to the axis Oz. We
shall consider electromagnetic waves propagating along the wave-
guide axis, that is eigenmodes of the structure.

Let us consider also cylindrical coordinate system Oρϕz and
axis Oz of cylindrical coordinate system coincides with axis Oz of
Cartesian coordinate system.

Electromagnetic field depends on time harmonically [17]:

Ẽ (ρ, ϕ, z, t) = E+ (ρ, ϕ, z) cosωt+E− (ρ, ϕ, z) sinωt,

H̃ (ρ, ϕ, z, t) = H+ (ρ, ϕ, z) cosωt+H− (ρ, ϕ, z) sinωt,

where ω is the circular frequency; Ẽ, E+, E−, H̃, H+, H− are real
functions. Everywhere below the time multipliers are omitted.

Let us form complex amplitudes of electromagnetic field (E,H):

E = E+ + iE−,
H = H+ + iH−,

where
E = (Eρ, Eϕ, Ez)

T , H = (Hρ,Hϕ,Hz)
T ,

and ( · )T denotes the operation of transposition and each component
of the fields E, H is a function of three spatial variables.
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Electromagnetic field (E,H) satisfies the Maxwell equations

rotH = −iωεE,

rotE = iωμH,
(1)

the continuity condition for the tangential components on the media
interfaces (on the boundary of the waveguide) and the radiation
condition at infinity: the electromagnetic field exponentially decays
as ρ → ∞.

The permittivity inside the waveguide is described by Kerr law

ε = ε0
(
ε2 + α|E|2) ,

where ε2 is a constant part of the permittivity, α is the nonlinearity
coefficient. The values ε2 and α are supposed to be real constants.

It is necessary to find surface waves propagating along the wave-
guide axis.

The solutions to the Maxwell equations are sought in the entire
space.

§2. TM Waves

Let us consider TM waves

E = (Eρ, 0, Ez)
T , H = (0,Hϕ, 0)

T ,

where Eρ = E(ρ, ϕ, z), Ez = Ez(ρ, ϕ, z), and Hϕ = Hϕ(ρ, ϕ, z).
Substituting the fields E and H into Maxwell equations (1), we

obtain ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ρ
∂Ez
∂ϕ = 0,

∂Eρ

∂z − ∂Ez
∂ρ = iωμHϕ,

1
ρ
∂Eρ

∂ϕ = 0,
∂Hϕ

∂z = iωεEρ,
1
ρ
∂(ρHϕ)

∂ρ = −iωεEz.

It is obvious from the first and the third equations of this system
that Ez and Eρ do not depend on ϕ. This implies that Hϕ does not
depend on ϕ.
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Waves propagating along waveguide axis Oz depend on z har-
monically. This means that the components of the field (E,H) have
the form

Eρ = Eρ(ρ; γ)e
iγz , Ez = Ez(ρ; γ)e

iγz ,Hϕ = Hϕ(ρ; γ)e
iγz ,

where γ is the propagation constant (the spectral parameter of the
problem).

So we obtain from the latter system⎧⎪⎨⎪⎩
iγEρ(ρ)− E′

z(ρ) = iωμHϕ(ρ),

iγHϕ(ρ) = iωεEρ(ρ),
1
ρ (ρHϕ(ρ))

′ = −iωεEz(ρ),

(2)

where ( · )′ ≡ d
dρ .

From the first equation of system (2) we obtain

Hϕ(ρ) =
1

iωμ

(
iγEρ(ρ)− E′

z

)
. (3)

Substituting expression (3) into equations of system (2), we
obtain {

−γ (iEz)
′ =
(
γ2 − ω2εμ

)
Eρ,

−γ 1
ρ (ρEρ)

′ − 1
ρ

(
ρ (iEz)

′)′ = ω2εμ (iEz) .
(4)

Introduce the notation

Eρ(ρ; γ) = u1(ρ, γ), iEz(ρ; γ) = u2(ρ, γ). (5)

Outside and inside the waveguide ε = ε̃ε0, where

ε̃ =

{
ε1, ρ > R;

ε2 + α
(
u21 + u22

)
, ρ < R,

and also let k20 = ω2ε0μ, where k0 > 0 is the wave number of free
space.

We consider that u1(ρ; γ), u2(ρ; γ) are real functions. We will
omit argument(s) γ and/or ρ if there are no misunderstandings.
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Using (5), from system (4) we obtain{
γu′2 +

(
γ2 − k20 ε̃

)
u1 = 0,

γ 1
ρ(ρu1)

′ + 1
ρ (ρu

′
2)

′ + k20 ε̃u2 = 0.
(6)

It is necessary to find eigenvalues γ of the problem that corre-
spond to surface waves propagating along waveguide axis, i.e., the
eigenvalues corresponding to the eigenmodes of the structure. We
seek the real values of spectral parameter γ, such that the nonzero
real solutions u1 and u2 to system (6) exist. We suppose that γ is
a real value (due to |E|2 does not depend on z, see the footnote on
p. 33, and also the note on p. 198).

Also we assume that functions u1 and u2 are sufficiently smooth

u1(x) ∈ C[0, R] ∩ C [R , +∞) ∩ C1[0, R] ∩ C1 [R, +∞) ,

u2(x) ∈ C [0 , +∞) ∩ C1[0, R] ∩ C1 [R, +∞)∩
∩ C2(0, R) ∩ C2(R,+∞).

Physical nature of the problem implies these conditions.
We will seek γ under conditions ε1 < γ2 < ε2. It should be

noticed that condition γ2 > ε1 holds if ε1 > 0. If ε1 < 0, then
γ2 > 0.

§3. Differential Equations of the Problem.

Transmission Conditions

In the domain ρ > R we have ε = ε1ε0. System (6) takes the
form {

k21u1 + γu′2 = 0,

−γ 1
ρ(ρu1)

′ − 1
ρ (ρu

′
2)

′ − k20ε1u2 = 0,
(7)

where k21 = γ2 − k20ε1.
From the first equation of this system we have u1 = − γ

k21
u′2.

Substituting this expression into the second equation of this system
we obtain the following equation with respect to u2

γ2

k21

1

ρ

(
ρu′2
)′ − 1

ρ

(
ρu′2
)′ − k20ε1u2 = 0.
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After simple transformation this equation is reduced to the
Bessel equation

1

ρ

(
ρu′2
)′ − k21u2 = 0. (8)

Denoting by k22 := k20ε2 − γ2, from (6) we obtain the system of
equations inside the waveguide{

−k22u1 + γu′2 = f1,

−γ 1
ρ(ρu1)

′ − 1
ρ (ρu

′
2)

′ − k20ε2u2 = f2,
(9)

where
f1 = k20α |u|2 u1, f2 = k20α |u|2 u2

and
|u|2 = u21 + u22, u = (u1, u2)

T .

Tangential components of electromagnetic field are known to be
continuous at media interfaces. In this case the tangential compo-
nents are Ez and Hϕ. Hence, we obtain

Ez(R+ 0) = Ez(R− 0), Hϕ(R+ 0) = Hϕ(R− 0),

where the constant ER
z = u2(R) = Ez(R + 0) is supposed to be

known (initial condition).
It is well known that a normal component of electromagnetic

field have a finite jump at the medium interface. In this case the
normal component is Eρ. It is also well known that the value ε̃Eρ is
continuous at the medium interface. Thus we obtain the transmis-
sion conditions for the functions u1 and u2:

[ε̃u1]ρ=R = 0, [u2]ρ=R = 0, (10)

where [f ]x=x0 = lim
x→x0−0

f(x)− lim
x→x0+0

f(x) denotes a finite jump of

the function f at the interface.
From the first condition (10) we obtain

ε2u1|ρ=R−0 − ε1u1|ρ=R+0 + αu1|u|2
∣∣
ρ=R−0

= 0. (11)
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Let us formulate the transmission problem (the problem P). It
is necessary to find eigenvalues γ and corresponding nonzero eigen-
functions u1(ρ) and u2(ρ) such that u1(ρ) and u2(ρ) satisfy to the
continuity conditions (see §2), satisfy to system (9) on (0, R), satisfy
to system (7) on (R,+∞); transmission conditions (10) and the
radiation condition at infinity: eigenfunctions exponentially decay
as ρ → ∞. The spectral parameter of the problem is the real value γ.

In accordance with the condition at infinity the solution of
system (7) has the form

u1 ≡ Eρ = − γ

k1
CK ′

0(k1ρ), u2 ≡ Ez = CK0(k1ρ), (12)

where C is an arbitrary constant; K0(z) = πi
2 H

(1)
0 (iz) is the Mac-

donald function [21].
It should be noticed that formulating the problem P it is enough

to require only boundedness of the function u1(ρ), and u2(ρ) at
infinity instead of exponential decaying. Indeed, the geeral solution
of equation (8) is a linear combination of two cylinder functions [82],
one of them (the Macdonald function K0(z)) exponentially decays
at infinity, and the other one exponentially increases at infinity.
Hereupon the other one must be neglected by virtue of the solu-
tions boundedness. Thus any bounded solution u1(ρ) and u2(ρ) of
system (7) exponentially decays at infinity.

§4. Nonlinear Integral Equation

and Dispersion Equation

Let us consider nonlinear system (9). From the first equation of
this system we obtain1

u1 =
1

k22
(γu′2 − f1). (13)

Substituting (13) it to the second equation of the system (9),

we have −γ 1
ρ

(
ρ 1
k22
(γu′2 − f1)

)′
− 1

ρ (ρu
′
2)

′ − k20ε2u2 = f2. It can be

1We recall that f1 depends on u1.
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written as

Lu2 ≡
(
ρu′2
)′
+ k22ρu2 =

k22
k20ε2

(
γ

k22
(ρf1)

′ − ρf2

)
(14)

with linear part Lu2 ≡ (ρu′2)
′ + k22ρu2.

With the help of the corresponding Green function one can
invert the linear part (the differential operator L) and obtain more
convenient to studying an integro-differential equation.

Equation (14) can be also written in the form(
ρu′2
)′
+ k22ρu2 = W, 0 < ρ < R, (15)

where

W (ρ) =
k22
k20ε2

(
γ

k22
(ρf1)

′ − ρf2

)
.

Let us construct the Green function for the boundary value
problem {

LG = δ(ρ− s),

G|ρ=0is bounded, G|ρ=R = 0, 0 < s < R,
(16)

and the differential operator is defined by formula

L = ρ
d2

dρ2
+

d

dρ
+ k22ρ.

The Green function can be obtained in the following form [82]

G(ρ, s) =

=

{
π
2J0(k2ρ)

N0(k2s)J0(k2R)−J0(k2s)N0(k2R)
J0(k2R) , ρ < s ≤ R,

π
2J0(k2s)

N0(k2ρ)J0(k2R)−J0(k2ρ)N0(k2R)
J0(k2R) , s < ρ ≤ R,

(17)

where J0(ρ) is the zero-order Bessel function; N0(ρ) is the zero-order
Neumann function [21]. The Green function exists if J0(k2R) 
= 0.
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Let us consider equation (15). Using the second Green formula

R∫
0

(vLu− uLv)dρ =

R∫
0

(
v
(
ρu′
)′ − u

(
ρv′
)′)

dρ =

= R
(
u′(R)v(R)− v′(R)u(R)

)
,

and assuming that v = G, we obatin

R∫
0

(GLu−uLG)dρ = R
(
u′(R− 0)G(R, s) −G′(R, s)u(R − 0)

)
=

= −Ru(R− 0)G′(R, s),

since it is clear from (17) that G(R, s) = 0.
Using formula (15), we have

R∫
0

GLu2dρ =

R∫
0

G(ρ, s)W (ρ)dρ.

Further, using (16), we obtain
R∫
0

u2LGdρ =

R∫
0

u2(ρ)δ(ρ − s)dρ = u2(s).

Applying all these results, from (14) we obtain the nonlinear
integral equation with respect to u2(s) on interval (0, R):

u2(s) =

R∫
0

G(ρ, s)W (ρ)dρ +Ru2(R− 0)
∂G(ρ, s)

∂ρ

∣∣∣∣
ρ=R

. (18)

Then, from (13) we obtain

u1(s) =
γ

k22

∂

∂s

R∫
0

G(ρ, s)W (ρ)dρ − f1(s)

k22
+

+
γR

k22
u2(R− 0)

∂2G(ρ, s)

∂ρ∂s

∣∣∣∣
ρ=R

, where ρ ≤ s ≤ R. (19)
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Notice that, multiplying functions E, H by an arbitrary constant
C0 
= 0 and the nonlinearity coefficient α by C−2

0 in (1) it does not
change the Maxwell equations. This circumstance gives an opportu-
nity to normalize the Maxwell system. Choose the normalization in
the form C = 1 (this problem depends on the initial condition ER

z ,
see the note on p. 49 for further details.). Then, from transmission
conditions (10), (11) and formulas (12) we obtain

u2(R− 0) = K0(k1R) (20)

and

ε2u1|s=R−0 + αu1|u|2|s=R−0 = −ε1
γ

k1
K ′

0(k1R). (21)

From formulas (12) and (21) we obtain the dispersion equation

Δ(γ) ≡ ε2u1(R−0)+αu1(R−0)|u(R−0)|2+ε1
γ

k1
K ′

0(k1R) = 0 (22)

under condition that functions u1, u2 are solution of the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1(s) =

γ
k22

∂
∂s

R∫
0

G(ρ, s)W (ρ)dρ − f1(s)
k22

+ γR
k22

K0(k1R) ∂2G
∂ρ∂s(R, s),

u2(s) =
R∫
0

G(ρ, s)W (ρ)dρ +RK0(k1R)∂G∂ρ (R, s)

(23)
(here formulas (12), (18), (19), and (20) are used).

It should be noticed that in system (23) all the functions are
defined on the interval (0, R) and can be found without reference to
the transmission conditions and the dispersion equation. It will be
shown below that under certain conditions system (23) has a unique
solution and the way of its finding will be presented.

Let us transform system (23) to the more convenient form,
where there are no required derivatives of functions under the integral
sign. First, transform the first summands in the right-hand sides of
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system (23). Using integration by parts and taking into account
W =

k22
k20ε2

(
γ
k22
(ρf1)

′ − ρf2

)
, we find

R∫
0

G(ρ, s)(ρf1)
′dρ = G(ρ, s)(ρf1)|R0 −

R∫
0

∂G(ρ, s)

∂ρ
ρf1(ρ)dρ =

= G(R, s)Rf1(R)−G(0, s) · 0 · f1(0) −
R∫
0

∂G(ρ, s)

∂ρ
ρf1(ρ)dρ.

Further, we have

∂

∂s

R∫
0

G(ρ, s)(ρf1)
′dρ =

=
∂

∂s

⎛⎝G(R, s)Rf1(R)−
R∫
0

∂G(ρ, s)

∂ρ
ρf1(ρ)dρ

⎞⎠ =

=
∂G

∂s
(R, s)Rf1(R)− ∂

∂s

R∫
0

∂G(ρ, s)

∂ρ
ρf1(ρ)dρ =

= − ∂

∂s

R∫
0

∂G(ρ, s)

∂ρ
ρf1(ρ)dρ.

Then, substituting explicit expression for the Green function in
this formula, we obtain

∂

∂s

R∫
0

∂

∂ρ
G(ρ, s)ρf1(ρ)dρ =

=
π

2

∂

∂s

s∫
0

k2J
′
0(k2ρ)

J0(k2s)N0(k2R)−N0(k2s)J0(k2R)

J0(k2R)
ρf1(ρ)dρ+
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+
π

2

∂

∂s

R∫
s

k2J0(k2s)
J ′
0(k2ρ)N0(k2R)−N ′

0(k2ρ)J0(k2R)

J0(k2R)
ρf1(ρ)dρ =

=
π

2

∂

∂s

⎡⎣ k2
J0(k2R)

J0(k2s)N0(k2R)

s∫
0

J ′
0(k2ρ)ρf1(ρ)dρ−

− k2
J0(k2R)

N0(k2s)J0(k2R)

s∫
0

J ′
0(k2ρ)ρf1(ρ)dρ+

+
k2

J0(k2R)
J0(k2s)N0(k2R)

R∫
s

J ′
0(k2ρ)ρf1(ρ)dρ−

− k2
J0(k2R)

J0(k2s)J0(k2R)

R∫
s

N ′
0(k2ρ)ρf1(ρ)dρ

⎤⎦ =

=
π

2
k22

J ′
0(k2s)

J0(k2R)
N0(k2R)

s∫
0

J ′
0(k2ρ)ρf1(ρ)dρ+

+
π

2
k2

N0(k2R)

J0(k2R)
J0(k2s)J

′
0(k2s)sf1(s)−

− π

2
k22

J0(k2R)

J0(k2R)
N ′

0(k2s)

s∫
0

J ′
0(k2ρ)ρf1(ρ)dρ−

− π

2

k2J0(k2R)

J0(k2R)
N0(k2s)J

′
0(k2s)sf1(s)+

+
π

2
k22

N0(k2R)

J0(k2R)
J ′
0(k2s)

R∫
s

k2J
′
0(ρ)ρf1(ρ)dρ−

− π

2

k2N0(k2R)

J0(k2R)
J0(k2s)J

′
0(k2s)sf1(s)−

− π

2
k22

J0(k2R)

J0(k2R)
J ′
0(k2s)

R∫
s

N ′
0(k2ρ)ρf1(ρ)dρ+
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+
π

2
k2

J0(k2R)

J0(k2R)
J0(k2s)N

′
0(k2s)sf1(s) =

=

R∫
0

∂2G

∂s∂ρ
(ρ, s)ρf1(ρ)dρ−

− k2sf1(s)
π

2

(
J0(k2s)N

′
0(k2s)−N0(k2s)J

′
0(k2s)

)
= −f1(s).

After transformation we obtain the system of integral equations
in the final form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1(s) = − γ2

k20ε2k
2
2

R∫
0

∂2G
∂s∂ρρf1dρ− γ

k20ε2

R∫
0

∂G
∂s ρf2dρ−
− 1

k22
f1(s) + h1(s),

u2(s) = − γ
k20ε2

R∫
0

∂G
∂ρ ρf1dρ−

k22
k20ε2

R∫
0

Gρf2dρ+ h2(s),

(24)

where

h1(s) =
γR

k22

∂2G(R, s)

∂ρ∂s
K0(k1R), (25)

h2(s) = R
∂G(R, s)

∂ρ
K0(k1R). (26)

Let us represent system (24) in the matrix operator form. In-
troduce the kernel matrix

K(ρ, s) = {Knm(ρ, s)}2n,m=1 = −ρ

(
q11Gρs q12Gs

q21Gρ q22G

)
, (27)

where the function G indexes denote partial derivatives. Also intro-
duce the matrix of coefficients

Q =

(
q11 q12
q21 q22

)
=

1

ε2

(
(γ/k2)

2 γ
γ k22

)
, (28)

and the matrix linear integral operator

K = {Knm}2n,m=1
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with the operators Kmn, associated with system (24),

Kg =

R∫
0

K(ρ, s)g(ρ)dρ, (29)

where g = (g1, g2)
T .

Then, the system of integral equations can be written in the
operator form

u = αK(|u|2u)− αJ(|u|2u) + h, (30)

where h = (h1, h2)
T and the operator J is defined by formula

J =
k20
k22

(
1 0
0 0

)
. (31)

Notice that the operators K, J are linear.
Also introduce two linear operators N := α(K − J) and

N0 := K− J.
We will consider equation (30) in C[0, R] = C[0, R] × C[0, R]

with the norm
‖u‖2C = ‖u1‖2C + ‖u2‖2C ,

where ‖u‖C = max
x∈[0,R]

u(x).

§5. Studying of the Integral Operators Kernels

To study integral operator (29) let us consider the corresponding
integral operators kernels.

Let Π = (0, R) × (0, R). Using properties of the Bessel and
Neumann functions, let us prove that the functions k11(ρ, s) and
k22(ρ, s) are continuous in (closed) square Π = [0, R] × [0, R]. The
function k12(ρ, s) is bounded in Π and continuous in T

+ and in
T
−\{0}. The function k21(ρ, s) is bounded in Π and continuous in

T
+ and in T

−, where

T
+
= {(ρ, s) ∈ Π, ρ ≥ s}, T−

= {(ρ, s) ∈ Π, ρ ≤ s}.
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By definition function f(ρ, s) is continuous in T
+ (in T

−) if for
any point (ρ0, s0) ∈ T

+

lim
ρ→ρ0,s→s0

(ρ,s)∈T
+

,(ρ0,s0)∈T
+

f(ρ, s) = f(ρ0, s0)

or for any point (ρ0, s0) ∈ T
−

lim
ρ→ρ0,s→s0

(ρ,s)∈T
−

,(ρ0,s0)∈T
−
f(ρ, s) = f(ρ0, s0).

The function f(ρ, s) is continuous in T
−\{0} if it is continuous

everywhere in T
− (in the above meaning) except the point ρ = 0,

s = 0. Under these conditions, a function f(ρ, s), which is continuous
in T

+ and in T
−, is not continuous in Π.

In order to prove above formulated properties of the kernels it
is only necessary to check the behavior of the functions k11(ρ, s),
k22(ρ, s), k12(ρ, s), and k21(ρ, s) at zero, i.e. at the point ρ = 0,
s = 0. Calculate the limits of the Green function and its derivatives
as ρ → 0, s → 0. As x → 0 we have

N0(x) = − 2

π
ln

2

γx
+O(1), N ′

0(x) =
2

πx
+O(1),

J0(x) = 1 +O(x), J ′
0(x) = −x

2
+O(x2).

Rewrite the Green function in the form

G(ρ, s) =
π

2

1

J0(k2R)
×

×
{
J0(k2ρ) (N0(k2s)J0(k2R)− J0(k2s)N0(k2R)) , ρ ≤ s ≤ R,

J0(k2s) (N0(k2ρ)J0(k2R)− J0(k2ρ)N0(k2R)) , s ≤ ρ ≤ R.
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Then, calculating the derivative, we obtain

∂G

∂s

∣∣∣∣
ρ≤s

=

=
π

2

J0(k2ρ)

J0(k2R)

(
N ′

0(k2s)J0(k2R)k2 − J ′
0(k2s)N0(k2R)k2

)
=

=
π

2
k2

J0(k2ρ)

J0(k2R)

(
N ′

0(k2s)J0(k2R)− J ′
0(k2s)N0(k2R)

)
.

Now, calculate the derivative as ρ → 0, s → 0

∂G

∂s
· ρ
∣∣∣∣
ρ≤s

=

=
π

2
k2

J0(k2ρ)

J0(k2R)

(
N ′

0(k2s)J0(k2R)− J ′
0(k2s)N0(k2R)

)
ρ =

=
π

2
k2

1

J0(k2R)

(
2

πk2s
J0(k2R)−

(
−k2s

2

)
N0(k2R)

)
ρ+ o(1) =

=
1

s
ρ+ o(1),

where o(1) denotes a function α(ρ, s) such that lim
ρ→0
s→0

α(ρ, s) = 0.

Since ρ ≤ s; therefore, the function is bounded in the neighborhood
ρ = 0, s = 0. Notice that the limit of this function as ρ → 0, s → 0
does not exist. Similarly we have

∂G

∂s

∣∣∣∣
s≤ρ

=

=
π

2
k2

J ′
0(k2s)

J0(k2R)
(N0(k2ρ)J0(k2R)− J0(k2ρ)N0(k2R)) =

=
π

2
k2

J ′
0(k2ρ)

J0(k2R)
(N0(k2ρ)J0(k2R)− J0(k2ρ)N0(k2R)) .
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Calculating the limit, we obtain

lim
ρ→0
s→0

∂G

∂s
· ρ
∣∣∣∣∣
s≤ρ

=

= lim
ρ→0
s→0

π

2
k2

J ′
0(k2ρ)

J0(k2R)
(N0(k2ρ)J0(k2R)− J0(k2ρ)N0(k2R)) ρ =

= lim
ρ→0
s→0

π

2
k2

1

J0(k2R)

(
k2s

2

2

π
ln

2

γk2ρ
· J0(k2R) +

k2s

2
N0(k2R)

)
ρ =

= lim
ρ→0
s→0

π

2

1

J0(k2R)
· k2 · k2s

2
N0(k2R)ρ = 0.

Thus the function

∂G

∂s
= −π

2

k2
J0(k2R)

×

×
{
J0(k2ρ) (N1(k2s)J0(k2R)− J1(k2s)N0(k2R)) , ρ ≤ s,

J1(k2s) (N0(k2ρ)J0(k2R)− J0(k2ρ)N0(k2R)) , ρ ≥ s,

is not continuous at zero, but it is bounded in the neighborhood of
zero. Here N1(ρ) is the first-order Neumann function [21].

Further, calculate the derivative

∂G

∂ρ

∣∣∣∣
ρ≤s

=
π

2
k2

J ′
0(k2ρ)

J0(k2R)
(N0(k2s)J0(k2R)− J0(k2s)N0(k2R)) .

Now, calculate the limit

lim
ρ→0
s→0

∂G

∂ρ
· ρ
∣∣∣∣∣
ρ≤s

=

= lim
ρ→0
s→0

π

2
k2

J ′
0(k2ρ)

J0(k2R)
(N0(k2s)J0(k2R)− J0(k2s)N0(k2R)) ρ =

= lim
ρ→0
s→0

π

2

k2
J0(k2R)

(
k2ρ

2

2

π
ln

2

γk2s
J0(k2R) +

k2ρ

2
N0(k2R)

)
ρ = 0.
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Similarly we have

∂G

∂ρ

∣∣∣∣
s≤ρ

=
π

2
k2

J0(k2s)

J0(k2R)

(
N ′

0(k2ρ)J0(k2R)− J ′
0(k2ρ)N0(k2R)

)
.

Calculating the limit, we obtain

lim
ρ→0
s→0

∂G

∂ρ
· ρ
∣∣∣∣∣
ρ≤s

=

= lim
ρ→0
s→0

π

2
k2

J0(k2s)

J0(k2R)

(
N ′

0(k2ρ)J0(k2R)− J ′
0(k2ρ)N0(k2R)

)
ρ =

= lim
ρ→0
s→0

π

2

k2
J0(k2R)

(
2

πk2ρ
· J0(k2R) +

k2ρ

2
N0(k2R)

)
ρ =

= lim
ρ→0
s→0

π

2

k2
J0(k2R)

2

πk2ρ
J0(k2R)ρ = 1.

Thus the function

∂G

∂ρ
= −π

2

k2
J0(k2R)

×

×
{
J1(k2ρ) (N0(k2s)J0(k2R)− J0(k2s)N0(k2R)) , ρ ≤ s,

J0(k2s) (N1(k2ρ)J0(k2R)− J1(k2ρ)N0(k2R)) , ρ ≥ s,

is not continuous at zero also but it is bounded in the neighborhood
of zero.

For the second derivatives, we find

∂2G

∂ρ∂s

∣∣∣∣
ρ≤s

=
π

2
k22

J ′
0(k2ρ)

J0(k2R)

(
N ′

0(k2s)J0(k2R)− J ′
0(k2s)N0(k2R)

)
.
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Calculate the limit

lim
ρ→0
s→0

∂2G

∂ρ∂s
· ρ
∣∣∣∣∣
ρ≤s

=

= lim
ρ→0
s→0

π

2
k22

J ′
0(k2ρ)

J0(k2R)

(
N ′

0(k2s)J0(k2R)− J ′
0(k2s)N0(k2R)

)
ρ =

= lim
ρ→0
s→0

π

2
k22

1

J0(k2R)

(
−k2ρ

2

)(
2

πk2s
J0(k2R) +

k2s

2
N0(k2R)

)
ρ =

= lim
ρ→0
s→0

π

2
k22

1

J0(k2R)

(
−k2ρ

2

)
2

πk2s
J0(k2R)ρ =

= lim
ρ→0
s→0

1

J0(k2R)

(
−k22ρ

2

)
1

r
J0(k2R)ρ = 0.

Further, similarly we obtain

∂2G

∂ρ∂s

∣∣∣∣
s≤ρ

=
π

2
k22

J ′
0(k2s)

J0(k2R)

(
N ′

0(k2ρ)J0(k2R)− J ′
0(k2ρ)N0(k2R)

)
.

Calculating the limit we obtain

lim
ρ→0
s→0

∂2G

∂ρ∂s
· ρ
∣∣∣∣∣
s≤ρ

=

= lim
ρ→0
s→0

π

2
k22

J ′
0(k2s)

J0(k2R)

(
N ′

0(k2ρ)J0(k2R)− J ′
0(k2ρ)N0(k2R)

)
ρ =

= lim
ρ→0
s→0

π

2

k22
J0(k2R)

(
−k2s

2

)(
2

πk2ρ
J0(k2R) +

k2ρ

2
N0(k2R)

)
ρ = 0.

The following function is continuous at zero

∂2G

∂ρ∂s
=

π

2

k22
J0(k2R)

×

×
{
J1(k2ρ) (N1(k2s)J0(k2R)− J1(k2s)N0(k2R)) , ρ ≤ s,

J1(k2s) (N1(k2ρ)J0(k2R)− J1(k2ρ)N0(k2R)) , ρ ≥ s.
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Thus we proved the following proposition.
Proposition 1. The functions k11(ρ, s) and k22(ρ, s) are

continuous in Π = [0, R]× [0, R]. The function k12(ρ, s) is bounded
in Π and continuous in T

+ and in T
−\{0}, the function k21(ρ, s)

is bounded in Π and continuous in T
+ and in T

−
.

Further, calculate the values of other functions contained in (25)
and (26). We have

∂G(R, s)

∂ρ
=

=
π

2
k2

J0(k2s)

J0(k2R)

(
N ′

0(k2R)J0(k2R)− J ′
0(k2R)N0(k2R)

)
=

=
π

2
k2

J0(k2s)

J0(k2R)

2

πk2R
=

1

R

J0(k2s)

J0(k2R)
.

Similarly for the second derivative we obtain

∂2G(R, s)

∂ρ∂s
= −k2

R

J1(k2s)

J0(k2R)
.

Then

h1(s) = − γ

k2

J1(k2s)

J0(k2R)
K0(k1R), (32)

h2(s) =
J0(k2s)

J0(k2R)
K0(k1R). (33)

The boundedness of the operator K : C[0, R] → C[0, R] results
from the properties of the kernels. It is obvious, that the operator
J : C[0, R] → C[0, R] is bounded. The corresponding proposition
with the estimations of norms of the operators will be given in the
next section.

§6. Estimations of Norms

of the Integral Operators

Let us estimate norms of the integral operators in C[0, R] =
C[0, R]× C[0, R]. These estimations are required below. First, con-
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sider the scalar case. Let the integral operator be defined by formula

Kϕ =

R∫
0

K(x, y)ϕ(y)dy (34)

with the bounded, piecewise continuous kernel K(x, y) in the [0, R]×
[0, R]. Then∣∣∣∣∣∣

R∫
0

K(x, y)ϕ(y)dy

∣∣∣∣∣∣ ≤
R∫
0

|K(x, y)| |ϕ(y)|dy ≤

≤ max
x∈[0,R]

|ϕ(x)|
R∫
0

|K(x, y)|dy ≤ ‖ϕ‖C max
x∈[0,R]

R∫
0

|K(x, y)|dy.

Therefore

‖Kϕ‖C = max
x∈[0,R]

∣∣∣∣∣∣
R∫
0

K(x, y)ϕ(y)dy

∣∣∣∣∣∣ ≤ M0 ‖ϕ‖C ,

where M0 = max
x∈[0,R]

R∫
0

|K(x, y)|dy.
Hence for the norm of the operator K : C[0, R] → C[0, R] we

have the estimation ‖K‖C→C ≤ M0. If the kernel of the integral
operator K(x, y) is continuous in [0, R] × [0, R], then the equality
‖K‖C→C = M0 holds [27]. Thus we proved the following proposition

Proposition 2. Let K : C[0, R] → C[0, R] be the integral
operator defined by formula (34) with the piecewise continuous
kernel K(x, y) in [0, R] × [0, R]. Then, the operator K is bounded
and its norm estimation

‖K‖C→C ≤ M0,

holds, where

M0 = max
x∈[0,R]

R∫
0

|K(x, y)|dy.
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Let us consider the vector case. Let the matrix linear integral
operator K = {Kmn}2m,n=1 be defined by formula

Kϕ =

R∫
0

K(x, y)ϕ(y)dy (35)

with the bounded kernels Knm(x, y). Let the kernels have the prop-
erties formulated in the Proposition 1.

Then, the following estimations

‖Kϕ‖2C = ‖K11ϕ1 +K12ϕ2‖2C + ‖K21ϕ1 +K22ϕ2‖2C ≤
≤ (‖K11ϕ1‖C + ‖K12ϕ2‖C)2 + (‖K21ϕ1‖C + ‖K22ϕ2‖C)2 ≤

≤ (‖K11‖C→C ‖ϕ1‖C + ‖K12‖C→C ‖ϕ2‖C)2 +
+ (‖K21‖C→C ‖ϕ1‖C + ‖K22‖C→C ‖ϕ2‖C)2 ≤

≤ 2 ‖K11‖2C→C ‖ϕ1‖2C + 2 ‖K12‖2C→C ‖ϕ2‖2C +

+ 2 ‖K21‖2C→C ‖ϕ1‖2C + 2 ‖K22‖2C→C ‖ϕ2‖2C ≤
≤ 2max

(
‖K11‖2C→C , ‖K12‖2C→C

)
· ‖ϕ‖2C+

+ 2max
(
‖K21‖2C→C , ‖K22‖2C→C

)
· ‖ϕ‖2C = M2 ‖ϕ‖2C ,

hold, where M2 = 2

(
max
j=1,2

‖K1j‖2C→C + max
j=1,2

‖K2j‖2C→C

)
.

Then ‖K‖C→C ≤ M .
Proposition 3. Let K : C[0, R] → C[0, R] be the integral

operator defined by formula (35) with the bounded kernels Knm(x, y)
in [0, R]×[0, R], defined by formulas (27) and (28). Then, the operator
K is bounded and its norm estimation

‖K‖C→C ≤ M,

holds, where

M2 = 2

(
max
j=1,2

‖K1j‖2C→C + max
j=1,2

‖K2j‖2C→C

)
.
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§7. Iteration Method

for Solving Integral Equations

Approximate solutions un(r) = (un1 (r), u
n
2 (r))

T , r ∈ [0, R] of
system of integral equations (24) can be calculated with the help of
the iteration process of the contraction mapping method

un+1
1 (r) = − αγ2

ε2k22

R∫
0

∂2G(r, ρ)

∂r∂ρ
ρ |un(ρ)|2 un1 (ρ)dρ−

−αγ

ε2

R∫
0

∂G(r, ρ)

∂r
ρ |un(ρ)|2 un2 (ρ)dρ−

αk20
k22

|un(ρ)|2 un1 (ρ)+h1(r),

un+1
2 (r) = − αγ

ε2k22

R∫
0

∂G(r, ρ)

∂ρ
ρ |un(ρ)|2 un1 (ρ)dρ−

− αk22
ε2

R∫
0

G(r, ρ)ρ |un(ρ)|2 un2 (ρ)dρ+ h2(r).

(36)

Let us prove that the sequence un1 (r), u
n
2 (r) converges uniformly

to the solution of system (24) in regard the right-hand side of system
(24) defines the contracting operator. Below indexes of norms of
operators are omitted since it is clear from the context what case
(scalar or vector) is considered.

Theorem 1. Let Br0 ≡ {u : ‖u‖ ≤ r0} be the ball of radius r0
with centre at zero. Also let two conditions

q := 3ar20 ‖K− J‖ < 1, (37)

αr30 ‖K− J‖+ ‖h‖ ≤ r0 (38)

hold. Then, the unique solution u ∈ Br0 of equation (or system
(24)) (30) exists. The sequence of approximate solutions un ∈ Br0

of equation (30) (or system (24)) defined by the iteration process

un+1 = αK
(|un|2un

)− αJ
(|un|2un

)
+ h
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(or (36)), converges in C[0, R] to the (unique) exact solution u ∈ Br0

of equation (30) (or system (24)) for any initial approximation
u0 ∈ Br0 with the geometric progression rate q.

Proof. Let us consider the equation u = A(u) with the nonlin-
ear operator

A(u) ≡ αK
(|u|2u)− αJ

(|u|2u)+ h

in C[0, R], where h is defined by formulas (32), (33).
Let u, v ∈ Br0 ; ‖u‖ ≤ r0, ‖v‖ ≤ r0, then

‖A(u)−A(v)‖ = α
∥∥∥K(|u|2 u− |v|2 v)− J(|u|2 u− |v|2 v)

∥∥∥ ≤
≤ 3α ‖K− J‖ r20 ‖u− v‖ . (39)

Let us prove estimation (39). Indeed,∥∥|u|2u− |v|2v∥∥ = ∥∥(|u|2u− |v|2u)+ (|v|2u− |v|2v)∥∥ ≤
≤ ∥∥(|u|2u− |v|2u)∥∥+ ∥∥(|v|2u− |v|2v)∥∥ ≤
≤ ∥∥(|u|2 − |v|2)∥∥ ‖u‖+ ∥∥(|v|2)∥∥ ‖u− v‖ =

= ‖(|u| − |v|)‖ ‖(|u|+ |v|)‖ ‖u‖+ ‖v‖2 ‖u− v‖ ≤
≤ ‖(|u| − |v|)‖ (‖u‖+ ‖v‖) ‖u‖+ ‖v‖2 ‖u− v‖ .

Taking into account

|u| ≤ |u− v|+ |v|, |u| − |v| ≤ |u− v|

and, similarly,

|v| ≤ |u− v|+ |u|, |v| − |u| ≤ |u− v|,

we obtain
|(|u| − |v|)| ≤ |u− v| ≤ |u− v‖,

therefore
‖(|u| − |v|)‖ ≤ ‖u− v‖.
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Then

‖(|u| − |v|)‖ (‖u‖+ ‖v‖) ‖u‖+ ‖v‖2‖u− v‖ ≤
≤ ‖u− v‖ (‖u‖ + ‖v‖) ‖u‖+ ‖v‖2‖u− v‖ ≤

≤ (2r20 + r20
) ‖u− v‖ = 3r20‖u− v‖.

We obtain ∥∥|u|2u− |v|2v∥∥ ≤ 3r20‖u− v‖. (40)

Estimation (39) follows from above estimations. We can see that

‖A(u)‖ =
∥∥αK (|u|2u)− αJ

(|u|2u)+ h
∥∥ ≤ αr30 ‖K− J‖+ ‖h‖ .

If condition (38) holds, then operator A maps the ball Br0 into
itself. From estimations (37) and (38) it follows that the operator A
is contracting in the ball Br0 . The principle of contracting mappings
[67] implies all statements of the theorem. The theorem is proved.

Choosing sufficiently great radius of the ball r0 in order that
the estimation ‖h‖ < r0 holds and then choosing sufficiently small
α it is easy to see that estimations (37) and (38) are satisfied.

Let us consider condition (38) in detail. The following consid-
eration requires the auxiliary number cubic equation

‖N‖r30 + ‖h‖ = r0, (41)

where the operator norm ‖N‖ = α‖K − J‖ > 0.
Let us consider the equation

r0 − ‖N‖r30 = ‖h‖ (42)

and the function y(r0) := r0 − ‖N‖r30 .
It is easy to show that the function y(r0) has only one positive

maximum point rmax = 1√
3‖N‖ . The value of the function at this

point is ymax = y (rmax) =
2

3
√

3‖N‖ .
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Then under condition 0 ≤ ‖h‖ < 2
3

1√
3‖N‖ equation (42) has

two nonnegative roots r∗ and r∗, r∗ ≤ r∗. The roots satisfy the
inequalities

0 ≤ r∗ ≤ 1√
3‖N‖ ;

1√
3‖N‖ ≤ r∗ ≤ 1√‖N‖ .

These roots can be written as solutions of the following cubic
equation

r30 −
1√‖N‖r0 +

‖h‖
‖N‖ = 0.

We have

r∗ = − 2√
3‖N‖ cos

⎛⎝arccos
(
3
√
3

2 ‖h‖√‖N‖
)

3
− 2π

3

⎞⎠ , (43)

r∗ = − 2√
3‖N‖ cos

⎛⎝arccos
(
3
√
3

2 ‖h‖√‖N‖
)

3
+

2π

3

⎞⎠ . (44)

If ‖h‖ = 0, then r∗ = 0 and r∗ = 1√
‖N‖ .

If 0 < ‖h‖ < 2
3

1√
3‖N‖ , then

r∗ <
1√
3‖N‖ . (45)

If ‖h‖ = 2
3

1√
3‖N‖ , then r∗ = r∗ = 2

3
1√
3‖N‖ .

Thus, we proved the following lemma.
Lemma 1. If the inequality

0 ≤ ‖h‖ <
2

3

1√
3‖N‖ , (46)

holds, then equation (41) has two nonnegative roots r∗ and r∗; and
r∗ < r∗.

Let us prove that if condition (46) holds, then equation (30) has
a unique solution in the ball Br∗ ≡ {u : ‖u‖ ≤ r∗}.
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Theorem 2. If α ≤ A2, where

A =
2

3

1

‖h‖√3‖N0‖
and ‖N0‖ := ‖K−J‖(> 0), then equation (30) has a unique solution
u in the ball Br∗ ≡ {u : ‖u‖ ≤ r∗} and u ∈ C[0, R], ‖u‖ ≤ r∗.

Proof. If u ∈ Br∗ , then

‖A(u)‖ =
∥∥αK (|u|2u)− αJ

(|u|2u)+ h
∥∥ ≤ αr3∗‖K−J‖+‖h‖ = r∗.

If u, v ∈ Br∗ , then

‖A(u)−A(v)‖ =

= α
∥∥K (|u|2u− |v|2v)− J

(|u|2u− |v|2v)∥∥ ≤
≤ 3α‖K − J‖r2∗‖u− v‖.

Since α ≤ A2; therefore, the vector h satisfies condition (46).
Thus equation (45) holds. And we obtain that

q = 3αr2∗‖K− J‖ = 3‖N‖r2∗ < 1.

Consequently, both inequalities (37) and (38) hold.
Thus A maps Br∗ into itself and is a contracting operator in

Br∗ . Therefore equation (30) has a unique solution in the ball Br∗ .
The theorem is proved.

It should be noticed that A > 0 does not depend on α.

The results about the properties of the boundary value problem
solutions will be proved in the next sections under certain sufficient
conditions for the problem’s parameters. Especially the proposition
about eigenvalues (solutions of dispersion equation (22)) existence
for the nonlinear boundary eigenvalue problem will be proved. The
small parameter method will be used for proving. In this problem
the nonlinearity coefficient α is the small parameter. This is the
natural approach, as it is known [4], that Kerr law (which we use in
this work) holds for small α.
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§8. Theorem of Continuity Dependence

of the Solution on the Spectral Parameter

The proposition on the parameter continuity dependence of the
solutions of integral equation (30) will be needed below. Rewrite
equation (30) in the following form

u = N
(|u|2u)+ h,

where the operator
N := α(K − J)

with the matrix kernels

N(ρ, s) := α(K(ρ, s)− J(ρ, s))

is defined by formulas (24)–(31).
Theorem 3. Let the matrix operator kernels N and right-hand

side h of equation (30) continuously depend on the parameter γ ∈
Γ0, N(γ) ⊂ C(Γ0), h(γ) ⊂ C(Γ0), on certain real segment Γ0. Let
also

‖h(γ)‖ ≤ 2

3

1√
3‖N(γ)‖ . (47)

Then the solutions u(γ) of equation (30) for γ ∈ Γ0 exist, are
unique and continuously depend on the parameter γ, u(γ) ⊂ C(Γ0).

Proof. Consider equation (30). Under the assumptions of the
theorem, the existence and uniqueness of solutions u(γ) follow from
Theorem 2. Let us prove that these solutions depend continuously
on the spectral parameter γ.

It is easy to see from the formula (43) that r∗(γ) continuously
depends on γ on segment Γ0. Let r∗∗ = max

γ∈Γ0

r∗(γ) and maximum

be achieved at a point γ∗, r∗(γ∗) = r∗∗. Choose γ +Δγ ∈ Γ0, then
r∗(γ) ≤ r∗∗ and r∗(γ +Δγ) ≤ r∗∗.

Furthermore, let Q0 = max
γ∈Γ0

(3r2∗(γ)‖N(γ)‖) and maximum be

achieved at a point γ̂ ∈ Γ0, Q0 = 3r2∗(γ̂) ‖N(γ̂)‖. Then Q0 < 1 by
virtue of assumption (47) of the theorem.
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First, let us assume that

‖u(γ)‖ ≥ ‖u(γ +Δγ)‖. (48)

Then the following inequalities are valid:

|u(s, γ +Δγ)− u(s, γ)| =

=

∣∣∣∣∣∣
R∫
0

N(γ +Δγ, ρ, s)|u(ρ, γ +Δγ)|2u(ρ, γ +Δγ)dρ−

−
R∫
0

N(γ, ρ, s)|u(ρ, γ)|2u(ρ, γ)dρ + h(s, γ +Δγ)− h(s, γ)

∣∣∣∣∣∣ ≤
≤
∣∣∣∣∣∣

R∫
0

(N(γ +Δγ, ρ, s)−N(γ, ρ, s)) |u(ρ, γ +Δγ)|2u(ρ, γ +Δγ)dρ+

+

R∫
0

N(γ, ρ, s)
(|u(ρ, γ +Δγ)|2u(ρ, γ +Δγ)− |u(ρ, γ)|2u(ρ, γ)) dρ

∣∣∣∣∣∣+
+ |h(s, γ +Δγ)− h(s, γ)|,

therefore (see the proof of Theorem 2)

‖u(γ +Δγ)− u(γ)‖ ≤
≤ r3∗(γ)‖N(γ +Δγ)−N(γ)‖+

+ ‖u(γ +Δγ)− u(γ)‖3r2∗(γ)‖N(γ)‖ + ‖h(γ +Δγ)− h(γ)‖.
Condition (48) is used above.
Then, it follows that

‖u(γ +Δγ)− u(γ)‖ ≤

≤ r3∗(γ)‖N(γ +Δγ)−N(γ)‖ + ‖h(γ +Δγ)− h(γ)‖
1− 3r2∗(γ)‖N(γ)‖
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and

‖u(γ +Δγ)− u(γ)‖ ≤

≤ r3∗∗‖N(γ +Δγ)−N(γ)‖ + ‖h(γ +Δγ)− h(γ)‖
1−Q0

, (49)

where Q0 and r∗∗ do not depend on γ.
Now, let ‖u(γ)‖ ≤ ‖u(γ + Δγ)‖. Then, all the preceding esti-

mates remain valid if we replace γ by γ + Δγ and γ + Δγ by γ.
Thus, estimate (49) also remains valid. The theorem is proved.

§9. Theorems of Existence and Uniqueness

Rewrite dispersion equation (22) in the following form

Δ(γ) ≡ ε2u1(R− 0) + αu1(R− 0)|u(R − 0)|2 + ε1
γ

k1
K ′

0(k1R) = 0,

where u1(R− 0) is defined from the first equation of system (24).
Using formula J1(z)N0(z)− J0(z)N1(z) =

2
πz and formula (17)

for the Green function, it is easy to show that the following formulas
∂G
∂s

∣∣
s=R−0

= 1
R

J0(k2ρ)
J0(k2R) ,

∂2G
∂ρ∂s

∣∣∣
s=R−0

= −k2
R

J1(k2ρ)
J0(k2R) are valid.

Now, using the above results and the first equation of system
(24), we find

u1(R− 0) =
γ2

k2k20ε2R

1

J0(k2R)

R∫
0

ρJ1(k2ρ)f1dρ−

− γ

k20ε2R

1

J0(k2R)

R∫
0

ρJ0(k2ρ)f2dρ−

− 1

k22
f1(R − 0)− γ

k2

J1(k2R)

J0(k2R)
K0(k1R).

(we keep in mind that f1 = αk20 |u|2u1 and f2 = αk20 |u|2u2).
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Put all the terms without α together in the left side and others
put in the right side. We obtain

ε2
γ

k2

J1(k2R)

J0(k2R)
K0(k1R)− ε1

γ

k1
K ′

0(k1R) = αF̃ (γ), (50)

where

F̃ (γ) =
γ2

k2R

1

J0(k2R)

R∫
0

ρJ1(k2ρ)|u|2u1dρ−

− γ

R

1

J0(k2R)

R∫
0

ρJ0(k2ρ)|u|2u2dρ−

− ε2
k20
k22

|u(R − 0)|2u1(R− 0) + |u(R − 0)|2u1(R − 0). (51)

Multiplying equation (50) by k1k2
γ J0(k2R) and taking into ac-

count equalities k22 = k20ε2 − γ2 and K ′
0(z) = −K1(z), we obtain

ε2k1J1(k1R)K0(k1R) + ε1k2J0(k2R)K1(k1R) = αF (γ), (52)

where

F (γ) =
k1
R

R∫
0

ρ (γJ1(k2ρ)u1(ρ)− k2J0(k2ρ)u2(ρ)) |u|2dρ−

− γ
k1
k2

J0(k2R)|u(R − 0)|2u1(R − 0). (53)

A solution of integral equation system (24) depends on α. Func-
tion (53) is expressed in terms of this solution therefore this function
implicitly depends on the nonlinearity coefficient α. Nevertheless,
this function can be evaluated by a constant (in a certain ball) and
this constant does not depend on α. It allows us to make right-hand
side (52) sufficiently small for sufficiently small α. The meaning of
the above transformations is in the following. We consider equa-
tion (52) and system (24) as equations with small parameters. It
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is possible to consider the equations in this way since the nonlin-
earity coefficient α in Kerr law is small (it follows from physical
consideration).

Let us consider the left-hand side of equation (52). It corre-
sponds to the dispersion equation for a linear medium inside the
waveguide, i.e. for α = 0 (see [34, 64])

g(γ) ≡ ε2k1J1(k1R)K0(k1R) + ε1k2J0(k2R)K1(k1R) = 0.

Introduce the notation λ1m := k20ε2 − j21m
R2 , λ2m := k20ε2 − j20m

R2 ,
where j0m is the m-th positive root of the equation J0(x) = 0 and
j1m is the m-th positive root of the equation J1(x) = 0; m = 1, 2, ...

It is known that j01 < j11 < j02 < j12 < j03 < j13 < ... [21].
Then λ21 > λ11 > λ22 > λ12 > λ23 > λ13 > ...

It is obvious that

sign J1

(
R
√
k20ε2 − λ2m

)
= sign J1(j0m) = (−1)m+1,

sign J0

(
R
√

k20ε2 − λ1m

)
= sign J0(j1m) = (−1)m.

The above formulas implies (taking into account that functions
K0(x) and K1(x) are positive for x > 0)

sign g
(√

λ1m

)
= (−1)m, sign g

(√
λ2m

)
= (−1)m+1.

Thus there is at least one root γ0i of equation g(γ) = 0 on
interval

(√
λ1i,

√
λ2i

)
if k20ε1 < λ1i and λ2i < k20ε2, i.e. g(γ0i) = 0

for γ0i ∈
(√

λ1i,
√
λ2i

)
.

Before the proving of the existence eigenvalues theorem for the
nonlinear boundary problem P , it should be noticed that the points√
λ2i are poles of Green’s function (17). The Green function is not

defined at these points. Therefore, we can choose sufficiently small
numbers δi > 0 such that the conditions

sign g
(√

λ2i − δi

)
= (−1)i+1, (54)
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and √
λ2i − δi > γ0i (55)

are fulfilled.
Let us form the segments Γi :=

[√
λ1i,

√
λ2i − δi

]
. The function

g(γ) has different signs at the different extremities of the intervals
Γi and vanishes at the point γ0i ∈

(√
λ1i,

√
λ2i − δi

)
under condi-

tions (54) and (55). Let λ1m > k20ε1 for certain m ≥ 1. Denote by

Γ :=
m⋃
i=1

Γi. Then we obtain

Theorem 4. Let the numbers ε1, ε2, α satisfy the conditions
ε2 > ε1 > 0, 0 < α ≤ α0, where

α0 = min

⎛⎜⎜⎜⎝min
γ∈Γ

A2(γ),

min
1≤l≤2,1≤i≤m

∣∣g(√λli)
∣∣

0.3R2

(
max
γ∈Γ

r∗(γ)
)3

⎞⎟⎟⎟⎠ , (56)

A(γ) =
2

3

1

‖h(γ)‖
√

3‖N0(γ)‖,

and the condition
λ1m > k20ε1 (57)

holds for certain m ≥ 1. Then, there are at least m values γi, i =
1, ...,m,

√
λ1i < γi <

√
λ2i − δi such that the problem P has a

nontrivial solution.
Proof. The Green function exists for all γ ∈ Γ by virtue of

choosing the values δi > 0 (i ≥ 1) (see conditions (54) and (55)). It
follows from the kernels and the right-hand sides of matrix integral
operator that A = A(γ) is a continuous function on the segment
γ ∈ Γ. Let A1 = min

γ∈Γ
A(γ) and choose α < A2

1. In accordance with

Theorem 2 the unique solution u = u(γ) of system (24) exists for
each γ ∈ Γ. This solution is a continuous function and ‖u‖ ≤ r∗ =
r∗(γ). Let r00 = max

γ∈Γ
r∗(γ). Evaluating function (53), we obtain

|F (γ,R;u)| ≤ Cr300.
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The function g(γ) is continuous and the equation g(γ) = 0 has
the root γ0i inside the segment Γi,

√
λ1i < γ0i <

√
λ2i. Let us denote

M1 = min
1≤i≤m

∣∣∣g (√λ1i

)∣∣∣ , M2 = min
1≤i≤m

∣∣∣g (√λ2i − δi

)∣∣∣ .
Then the value M̃ = min{M1,M2} is positive (M̃ > 0) and

does not depend on the parameter α.
If α ≤ M̃

Cr300
, then

(g(λ1i)− αF (λ1i))
(
g
(√

λ2i − δi

)
− αF

(√
λ2i − δi

))
< 0.

Since g(γ) − αF (γ,R;u) is also a continuous function; there-
fore, the equation g(γ) − αF (γ,R;u) = 0 has the root γi inside Γi,√
λ1i < γi <

√
λ2i − δi. We can choose α0 = min

{
A2

1,
M̃

Cr300

}
. The

theorem is proved.
From Theorem 4, it follows that, under the above assumptions,

there exist axially symmetrical propagating TM waves in cylindrical
dielectric waveguides of circular cross-section filled with a nonmag-
netic isotropic medium with Kerr nonlinearity. This result general-
izes the well-known similar statement for dielectric waveguides of
circular cross-section filled with a linear medium (i.e., α = 0) [40].

From the condition λ1m > k20ε1 it follows that R2 >
j211

(ε2−ε1)k20
.

Thus radius R can not be arbitrary small (similarly with the exis-
tence of the cut-off radius in a linear case). Taking into account this
fact it is easy to see that the sufficient conditions for the nontrivial
solution existence of the problem depend on not only the nonlin-
earity coefficient α smallness but on the waveguide radius R and
parameter ε2 also.

§10. Iteration Method

and Estimation of the Convergence Rate

Approximate solutions un(s) = (un1 (s), u
n
2 (s))

T of integral equa-
tions system (24) can be calculated by means of the iteration process

un+1 = α(K − J)
(|un|2un

)
+ h. (58)
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As it is proved in Theorem 1, the sequence u(s) converges
uniformly to the solution u(s) = (u1(s), u2(s))

T of equation (24).
And the rate of convergence of the iteration process is also known
[67]. Particularly, if the initial approximation is u0(s) = (0, 0)T , then
we obtain the following estimation of the iteration process conver-
gence rate.

Proposition 4. Let u0 = (0, 0)T . The sequence of approximate
solutions un = (un1 , u

n
2 )

T of system (24), defined by means of iteration
process (58), exists and converges in the norm C[0, R] to the (unique)
exact solution u of system (24) and the convergence rate estimation

‖u− un‖ ≤ qn

1− q
‖h‖, n → ∞,

is valid, where q := 3αr2∗‖K−J‖ < 1 is the coefficient of contraction
of the mapping.

§11. Convergence Theorem of the Iteration Method

Let us formulate the iteration method to calculate approximate
eigenvalues of the boundary problem P . Also we prove the exis-
tence and convergence (the approximate solution to the exact one)
theorems.

Theorem 5. Suppose that ε2 > ε1 > 0 and 0 < α ≤ α0, where
α0 is defined by (56), and condition (57) holds for certain m ≥ 1.
Then, for each n ≥ 0 at least m values γ

(n)
i , i = 1, ...,m, exist.

These γ
(n)
i satisfy the inequality

√
λ1i < γ

(n)
i <

√
λ2i − δi and are

roots of the equation

k
(n)
1 ε2K1

(
k
(n)
1 R

)
J0

(
k
(n)
2 R

)
+ k

(n)
2 ε1K0

(
k
(n)
1 R

)
J1

(
k
(n)
2 R

)
=

= αF (γ(n)), (59)

where k
(n)
1 =

√(
γ(n)
)2 − ε1, k

(n)
2 =

√
ε2 −

(
γ(n)
)2 and un is defined

by (58).
Proof. Since (58) is valid, for each n ≥ 0 functions un are

continuous. Thus it is enough to repeat the proof of Theorem 4 with
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changing u by un and check the conditions ‖un‖ ≤ r∗ = r∗(γ). This
inequality is fulfilled since all the iterations un lie inside the ball
Br∗ [67] if an initial approximation lies inside the ball Br∗ (which
holds).

Theorem 5 states the existence of approximate eigenvalues of
the boundary problem P . Equation (59) is the approximate disper-
sion equation for the boundary problem P . This equation uses the
(known) vector un instead of (unknown) u. It is the only distinction
between this equation and the exact dispersion equation.

The following theorem states the convergence of approximate
eigenvalues to the exact ones.

Theorem 6. Let ε1, ε2, a, satisfy the condition ε2 > ε1 > 0,
0 < α ≤ α0, where α0 is defined by (56), and condition (57) holds for
certain m ≥ 1. Let γi and γ

(n)
i be exact and approximate eigenvalues

of the problem P , respectively in the segment Γi (γi, γ
(n)
i are roots of

the exact and approximate dispersion equations, respectively, i ≤ m,
m ≥ 1). Then

∣∣∣γ(n)i − γi

∣∣∣→ 0 as n → ∞.
Proof. Consider functions

Φ(γ) = g(γ) − αF (γ;u), Φn(γ) = g(γ)− αF (γ;un).

Then, using estimation (40) and formulas (51)–(53), we find

|Φ(γ)−Φn(γ)| = α|F (γ;u) − F (γ;un)| ≤
≤ αC̃‖u− un‖ ≤ αC̃

qn

1− q
‖h‖,

where the constant C̃ does not depend on n and all other values are
defined above.

We have

max
γ∈Γ

|Φ(γ)− Φn(γ)| ≤ α
Qn

1−Q
C∗, (60)

where C∗ = max
γ∈Γ

{
‖h(γ)‖C̃(γ)

}
, Q = max

γ∈Γ
(
3r2∗(γ)‖N(γ)‖

)
and Q < 1.
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Under theorems 4 and 5 conditions the solutions γi and γ
(n)
i

of the exact and approximate dispersion equations Φ(γ) = 0 and
Φn(γ) = 0 (n ≥ 0) exist. When proving theorems 4 and 5 is obtained
that the continuous functions Φ(γ), Φn(γ) change its signs on the
extremities of the interval Γi. Then, estimation (60) implies the proof
of the theorem.

§12. Numerical Method

The numerical method for calculating approximate eigenvectors
and approximate eigenfunctions of the nonlinear boundary problem
P is implemented in the following way.

Let us introduce a grid

ρj = jH0, j = 0, N − 1,

where H0 = R/N in the segment [0, R]. All the integrals on the
segment [0, R] are calculated by method of rectangles with the nodes
ρ∗j = jH0+H0/2. The function un is considered as a mesh function,
which is set at the nodes ρ∗j . To be more precise, un(ρ) = un(ρ∗j )

for ρ ∈
(
ρ∗j −H0/2, ρ

∗
j +H0/2

)
.

Let us introduce a grid γij =
√
λ1i + jhi, j = 0, Ni − 1, where

hi =
(√

λ2i − δi −
√
λ1i

)
/Ni (the step h is sufficiently small) in the

segment Γi. Then, the values Δ(γij) are calculated and the segments
of signs reversal of Δ(γij) are defined. In other words, the segments
[γij , γi,j+1] such that Δ(γij)Δ(γi,j+1) < 0 are defined. In the each of
these segments the value of the localized root of equation Δ(γ) = 0 is
refined by the dichotomy method. Thus the approximate eigenvalues
γ̃
(n)
i can be made arbitrary close to the exact roots γ

(n)
i by means

of choosing the steps H0 and hi.
Iteration process (58) of solving integral equations system (24)

(with fixed γ) begins with the initial approximation u0(s) = (0, 0)T

and finishes when the estimation max
0≤j≤N−1

∣∣∣un+1(ρ∗j )− un(ρ∗j )
∣∣∣ < δ

is fulfilled for certain sufficiently small δ > 0.
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